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Abstract. One-pixel attack is a curious way of deceiving neural net-
work classifiers by changing only one pixel in the input image. The full
potential and boundaries of this attack method are not yet fully un-
derstood. In this research, the successful and unsuccessful attacks are
studied in more detail to illustrate the working mechanisms of a one-
pixel attack created using differential evolution. The data comes from
our earlier studies where we applied the attack against medical imaging.
We used a real breast cancer tissue dataset and a real classifier as the
attack target. This research presents ways to analyze chromatic and spa-
tial distributions of one-pixel attacks. In addition, we present one-pixel
attack confidence maps to illustrate the behavior of the target classifier.
We show that the more effective attacks change the color of the pixel
more, and that the successful attacks are situated at the center of the
images. This kind of analysis is not only useful for understanding the
behavior of the attack but also the qualities of the classifying neural
network.

Keywords: one-pixel attack · classification · perturbation methods ·
visualization · cybersecurity

1 Introduction

The use of Artificial Intelligence (AI), including sub-branches Machine learning
(ML) and Deep Learning (DL), is continuously increasing as support for decision
making in automated image analysis of medical imaging [20,6]. One enabler for
such evolution is that there is the abundance of available data for research and
development activities in the medical domain [11]. However, from the cyber se-
curity standpoint, this evolution fosters attack surface, and it should be realized
that new technologies attract malicious actors and especially medical domain can
be seen as a valuable target to gain profit by causing disruptions. It is noticeable
that most of the medical data has sensitive nature. For example, Europol has
announced that during the ongoing COVID-19 pandemic, the pandemic-themed
cybercrime activities and campaigns are also targeted to healthcare organiza-
tions. [15]. Newaz et al. propose an adversarial attack against ML enabled smart
healthcare system [9]. Attacks against new technologies might induce harmful
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effects: considerable time to recover, mistrust against AI-based models and even
fear of misdiagnosis. It is noticeable that Internet of Things (IoT) devices have
a remarkable role in the healthcare [2] and there are known security issues with
IoT. Several AI models are in risk for adversarial attacks [19] Liu et al. introduce
and summarize the DL associated attack and defense methods [7], while Qayyum
et al. [10] introduce methods to warrant secure ML for healthcare. Integrity and
unauthorized usage of medical image data is important when considering attacks
against AI based medical imaging. In that sense, Kamal et al. proposed image
encryption algorithm for securing medical image data [3].

One-pixel attack is an adversarial method that changes just one pixel in an
image to cause misclassification. The attack is created by using optimization to
find the best pixel that flips the classification decisiton made by a classifier [14].
However, its sensitivity to change and effectiveness are not fully understood.
A few methods have been proposed to visualize the effect of one-pixel attacks.
Wang et al. propose pixel adversarial maps and probability adversarial maps [18].
Vargas et al. go further, and use internal information from the neural network
model to create propagation maps to show the influence of one-pixel attacks
through convolution layers. [16]

In this study, we provide tools to understand the behavior of a neural net-
work classifier targeted by the one-pixel attack. Our present analysis is a natural
extension to our prior studies related to the attack method. Earlier, we have in-
troduced a list of methods to fool artificial neural networks used in medical
imaging [13]. One-pixel attack appeared to be a comprehensive and realistic at-
tack vector, so we decided to further investigate it as a conceptual framework
in the medical imaging domain [12]. When the concept and usability of the at-
tack were understood, we succeeded to implement the technical one-pixel attack
against real neural network models used in medical imaging [5]. That first tech-
nical attack was a success, but the pixel changes in the images were quite easily
observable by a human. It seemed that the attack was not realistic or compre-
hensive for real-world attackers, so we decided to further develop the attack
methodology [4].

The new tools we propose somewhat differ from the earlier studies. All the
methods complement each other when investigating the classification effects of
one-pixel changes to images. While the other methods are useful when trying
to understand the internal state of the classifier (such as Vargas et al. [16]) or
mapping attacks against each pixel (such as Wang et al. [18]), our confidence map
approach directly addresses the classification result. Wang et al. use successful
attacks generated for each pixel as a base for their maps [18]. Our periodicity
analysis here concerns successful attack locations of each image that have been
generated earlier. Furthermore, our confidence map analysis iterates over the
color space to saturate each pixel in a brute force manner, as we do not use
optimization to find attack pixels during the analysis.

The rest of the paper is organized as follows. First, data source and analysis
methods, including confidence map computation, are introduced in section 2.
Results of chromatic, spatial and periodicity analysis are presented in section 3
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with tables and figures. Finally, the study is concluded with final discussion and
future research topics in section 4.

2 Methods

2.1 Data source

In our previous publications we introduced how an artificial neural network im-
age classifier model could be fooled by changing only one pixel in the input
image [5,4]. Those studies targeted IBM CODAIT MAX breast cancer detector
which uses a modified ResNet-50 model [1]. The model is an open-source convo-
lutional neural network classifier predicting the probability that the input image
contains mitosis. The previous studies used a pretrained version of the model
that was trained using the TUPAC16 breast cancer dataset [8,17]. We use the
same model in this research.

The study used the one-pixel attack to find adversarial images that would
make the model predict wrong results for the input images [14]. This method
uses differential evolution optimization, where a population of breast cancer im-
ages is attacked by randomly choosing one pixel and randomly changing the
pixel’s colors to new values. The color values are mutated until the lowest confi-
dence score is achieved for the breast cancer image. The method efficiently finds
possible one-pixel changes to the image that changes the prediction outcome.

The targeted model can be fooled in two ways. If the model predicts strong
probability of mitosis for the input image, then the one-pixel attack is used
to find the pixel that lowers the predicted mitosis probability when the pixel
color is changed (mitosis-to-normal). The other way to fool the model is to
try to increase the predicted mitosis probability when the model predicts low
mitosis confidence score for some input image (normal-to-mitosis). The study
explored both possible cases of fooling the model. The study concluded that
both mitosis-to-normal and normal-to-mitosis attacks are possible, but of those
two, mitosis-to-normal attacks are considerably easier to carry out.

The dataset used in this study contains the one-pixel attack results from the
previous study [5], and information of the attacked image, such as the attack
pixel’s location in the image and the nearby neighboring pixels’ color values of
the attacked pixel. We were interested in studying attacks that were at least par-
tially successful. We considered normal-to-mitosis attacks that raise the confi-
dence score above 0.1 and mitosis-to-normal attacks that lowered the confidence
score below 0.9 to be potentially dangerous attacks, and included all of them to
our visualizations. Using these filters, 3,871 mitosis-to-normal attacks and 319
normal-to-mitosis attacks were used as a visualization dataset. Although not all
attacks in this dataset were successful in flipping the classification result to other
class, we consider them to be successful because they change the confidence score
perceptually enough that the result is no longer trustworthy.
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2.2 One-pixel attack confidence map computation

In addition to analyzing the results from our previous paper, we also carried out
additional tests for some of the dataset images by brute forcing a subset of all
possible attack vectors for the images, producing a one-pixel attack confidence
map. This gave us a clearer view how the successful attack vectors were posi-
tioned in individual images. The brute force computation was conducted on a
few handpicked images that were chosen based on our previous paper results in
a way that we had successful and failed examples of both mitosis-to-normal and
normal-to-mitosis attack types.

This research used color images, hence each pixel has three color channels
and the color value for each channel has a value between 0−255. This means that
the total number of possible colors for a single pixel is 16, 777, 216. The images
were 64 × 64 pixels in size, so the total number of all possible attack vectors
is 68, 719, 476, 736 for a single image. We concluded that computing all possible
vectors for the images is not worthwhile; therefore, we settled on a subset of all
possible attack colors. The selected set of colors C (1) was generated by taking
every fifth color value for each channel and taking all their color combinations.
In the equation, r, g and b are the red, green, and blue color channels:

C = {(r, g, b) | r, g, b ∈ {0, 5, 15 . . . 255}}. (1)

Even when the brute forced colors were reduced to the set C, there was still
140, 608 different colors for a single pixel, meaning that the total number of
attack vectors for a single image was still 575, 930, 368. With that many images
we could not use the Docker containerized version of the model that was used
in our previous study over the HTTP API, because the containerized version of
the model does not support GPU computation or image batching. We overcame
this problem by deploying the model to our computation server without the
containerization layer and implementing a highly efficient GPU accelerated data-
pipeline that implemented the one-pixel modifications on GPU without needing
to continuously copy the images between CPU and GPU memory. With this
setup computing the 575, 930, 368 attack vectors for one image took about 5
hours on our computation server using one Nvidia Tesla V100 GPU.

The results of the brute force attack vector analysis were reduced to mini-
mum, maximum and average score values for each pixel coordinate.

Let Ix,y be the set of all modified images where pixel coordinate (x, y) value
is replaced with color value c ∈ C in the image under brute force computation.
Let f be the model that predicts the score for the images. The results of the
brute force attacks were processed with method described in Equation 2 and
Algorithm 1.

smax(x, y) = max({f(i) | i ∈ Ix,y})
smin(x, y) = min({f(i) | i ∈ Ix,y})
savg(x, y) = avg({f(i) | i ∈ Ix,y})

(2)
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Algorithm 1 Brute force results processing algorithm
maxscores← ARRAY[64][64]
minscores← ARRAY[64][64]
avgscores← ARRAY[64][64]
for x← 0 to 63 do

for y ← 0 to 63 do
maxscores[x][y]← smax(x, y)
minscores[x][y]← smin(x, y)
avgscores[x][y]← savg(x, y)

end for
end for

3 Results

3.1 Chromatic and spatial analysis

The difference between color values of two different pixels was measured by root
mean square error (RMSE).

h(x) =

√
(cr − crµ)2 + (cg − cgµ)2 + (cb − cbµ)2

3
,

where cr, cb, cg are the color values of the attack vector and crµ, cgµ, cbµ are
the means of the attack vector’s surrounding pixels’ color values. All values were
scaled within the range [0, 1].

When the attacks managed to fool the neural network, the error function
values were high in mitosis-to-normal attacks, as can be observed from Figure 1,
which shows one vertical and one horizontal cluster. This indicates that the
attacks which managed to lower confidence score the most had pixel color values
noticeably different from the surrounding colors. The positioning of the attack
pixel also matters, since some attacks had a higher color difference between
neighboring pixels and still did not manage to lower the confidence score by
more than 0.2.

In normal-to-mitosis attacks the error values were lower than in mitosis-to-
normal attack, as can be seen in Figure 2, which shows no clusters; instead, the
dots are more evenly distributed between the lower X axis values.

Mean, median and standard deviation numerical measures were calculated
for the attacks. In the Table 1, the X and Y mean and median indicate that
the attacks were mostly located at the center of the 64 by 64 pixels images.
Meanwhile, the color values of red and green were near the maximum value of
255, while blue values were lower with higher standard deviation compared to
red and green.

In normal images, the statistical measures listed in Table 2 show that the
attack vector is mostly again located at the center of the image, while there
is much greater variation in red, green and blue color values, with a standard
deviation between 90 and 100 in all of them.
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Fig. 1: Scatter plot of error function values between the attack pixel color values
and neighboring pixel color values. Notice the vertical cluster at low error values
and horizontal cluster at higher error values.

Table 1: Statistical measures for mitosis-to-normal attacks (N = 3871)

X Y Red Green Blue

Mean 32.40 29.30 231.14 227.24 67.07
Median 32 30 255 255 37
SD 8.2 8.59 41.62 45.99 77.85

Table 2: Statistical measures for normal-to-mitosis attacks (N = 319)

X Y Red Green Blue

Mean 31.55 31.15 145.28 153.31 124.29
Median 32 32 154 168 129
SD 10.54 10.77 92.62 93.04 99.53
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Fig. 2: Scatter plot of error function values between the attack pixel color values
and neighboring pixel color values.
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The statistical measures show that the dataset is most likely preprocessed in
such a manner that the features used by the neural network to classify an image
to either mitosis or normal class are located in the center of the image. Higher
red and green color values were the key in fooling the neural network in both
attacks, while blue color values were closer to zero or in the middle of the color
range. In the TUPAC16 dataset, the mitosis activity was low in color range, so
the neural network might be fooled by values in the higher color range.

3.2 Periodicity analysis

The targeted model is a neural network with convolution layers, which shift
through the input image in smaller windows and step to the right in steps. To
check for biases in the convolutional model, the best attack locations for all the
target images is visualized in a heatmap in Figure 3.

Fig. 3: A heatmap of attack placements in images. Notice the checkerboard pat-
tern at the center.

There was a smaller ratio of successful attacks in normal-to-mitosis direction,
and the heatmap visualization in Figure 4 does not show any significant clusters
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or patterns. There is less periodicity and the center of the image is a more
prominent location for the successful attacks.

Fig. 4: A heatmap of attack locations in images. The attacks are placed mostly
around the center of the image.

One of the most remarkable features of the spatial diagrams is the period-
icity of the mitosis-to-normal attacks. Almost all successful attack pixels have
coordinates with even numbers. From all of the 5, 343 mitosis-to-normal attacks,
the differential evolution algorithm settled on pixel coordinates that had even
numbers for both coordinates 5, 334 times. Only 9 times did the algorithm have
best success with coordinates where both or one of the coordinates was an odd
number. Only 1 of the 9 odd coordinate attack vectors was successful of lowering
the score below 0.5 with modified score of 0.387.

For normal-to-mitosis attacks the coordinates also preferred even coordi-
nates; however, not so clearly. From all of the 80, 725 attacks 49, 573 or 61.4%
settled on even coordinates and 31, 152 or 38.6% settled on odd coordinates.

Our first reaction was to review the attack code for periodic error but after
diligent assessment the code was deemed to be working as it should. This led
to the conclusion that a periodic process in the classifier itself was causing this



10 J. Alatalo et al.

noticeable behavior. The behavior was verified after we brute forced the subset
of attack vectors using the method described in 2.2.

Even with the reduced color space the checkerboard pattern was clearly vis-
ible when analyzing the results from the brute force computations. Figure 5a
shows an example image where the minimum confidence score is visualized for
each pixel in the image from all the computed attack vectors. As can be seen in
the image, the same checkerboard pattern is clearly visible.

The effect of even coordinates being more vulnerable to pixel modifications
might be a side effect of the architecture that the targeted model uses. The model
source code shows that the model uses convolutional blocks where convolutional
layer stride is set to (2, 2). This could cause the checkerboard pattern. If some
filter kernel on a convolutional layer that has the stride of (2, 2) is vulnerable
to the pixel modification attack, then that effect would be duplicated to every
other pixel while the kernel sweeps across the image dimensions while skipping
every other coordinate.

3.3 Brute force confidence map result analysis

The brute force computations we performed for some handpicked images for both
mitosis-to-normal and normal-to-mitosis images gave more information about
the pixel positions for the successful attacks and a possible explanation why
some of the attacks failed.

Figure 5a visualizes the minimum scores for each pixel that were computed
for the attack vectors in the executed mitosis-to-normal brute force attack for
this image. The original score for the image was 0.9874 and the lowest score that
one of the pixel modifications achieved was 0.2689. The image shows that all
the attack vectors successfully lowering the score in any meaningful way were
situated in the middle of the dark spot in the image.

Figure 5b shows a similar mitosis image; however, in this image the dark
spot is larger. This is an example of a failed mitosis-to-normal attack. The
original score for this image was 0.99998 and the lowest score that any of the
attack vectors achieved was 0.99979, so the best one-pixel change resulted in
practically no change at all. Comparing this image to the successful mitosis-to-
normal attack in Figure 5a shows that this time the pixel modifications that
were in the middle of the dark spot had absolutely no effect at all, and the pixel
modifications that had even the slightest effect to the score were the ones on the
edge of the dark spot. This could indicate that the dark spot is so big that the
one-pixel modification is not large enough change to fool the model.

Similar to the previously described mitosis-to-normal attacks, Figure 5c and
Figure 5d show successful and failed normal-to-mitosis attacks. The successful
attack in Figure 5c increased the score from original 0.09123 to 0.86350, but
the failed attack in Figure 5d had practically no success at all with the original
score of 4.29× 10−7 and the highest achieved score of 1.04× 10−6. It seems that
the successful normal-to-mitosis attacks require some kind of dark spots in the
middle of the image that the attack pixel highlights by making the spot look
bigger and this way fooling the model. If the image does not have a spot in the
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middle of the image, then one pixel change is not enough to fool the model to
think that there is a spot that would indicate a mitosis.

4 Conclusion

We have presented a way to systematically analyze the quality of one-pixel at-
tacks. The target images were a set of digital pathology images and the target
classifier tried to detect cancerous growth in them. We focused our efforts on
the color and location of the attacks, as well as periodicity analysis through
confidence maps. The tools we have used are able to reveal more information
about the vulnerability of the classifier by pointing out the areas where successful
attacks are more probable.

Chromatic analysis reveals that there are two clusters of attacks. It seems
that the confidence score between the original and the adversarial images either
stays low or, in the case of successful attacks, gets a rather big boost towards
the wanted classification. Furthermore, the attack seems to be more effective the
bigger the color difference is. As expected, this creates conflicting multi-objective
optimization goals.

Spatial analysis reveals that the most sensitive areas for the attack are in
the middle of the image. This is probably caused by the preprocessing, which
produces images that have the prominent feature in the middle. This, in turn,
causes the neural network classifier to focus on the middle of the image. Fur-
thermore, combining the spatial and chromatic dimensions, pixels in successful
attacks seem to appear inside the dark patches. Another common area is the
edge of those dark patches. Taking into account the nature of the target images,
this shows that color changes are prominent indications detected by the target
model.

Periodicity analysis shows that some rows and columns are more susceptible
to the attack. This stems from the features of the target classification model,
which uses a neural network. It seems that a brute force mapping of classifier
behavior is useful. The confidence maps illustrate that the most successful at-
tacks are clustered around the dark middle areas of the images. It seems that
it is difficult to realize a one-pixel attack if there is no clear dark area. This is
caused by what the target classifier is trained to detect, and thus, focus on.

The methodology presented in this article is suitable for the analysis of any
one-pixel attack, and not confined to the world of medical imaging. Our exper-
iment used one dataset of such images. Therefore, the results may be skewed
because of it and the target model used. Further experimentation could show
the generalizability of the methods to other domains. The only requirement for
the presented tools is to have access to a black-box classifier, which produces
confidence scores. Such tools should be useful when assessing the quality of
the classifier and its robustness. The need of including robustness metrics and
mitigation methods to the toolbox of standard implementations seems like the
correct direction in future research.
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(a) Successful mitosis-to-normal attack

(b) Failed mitosis-to-normal attack

(c) Successful normal-to-mitosis attack

(d) Failed normal-to-mitosis attack

Fig. 5: Images showing examples of successful and failed mitosis-to-normal and
normal-to-mitosis brute force attacks. In each subimage, on the right is the
original image under brute force attack, and on the left is a heatmap visualization
of maxscores or minscores array that are defined in algorithm 1. The heatmap
image shows the pixel locations that had the biggest impact on the output score
when the pixel color was changed.
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