Adaptive Framework for Network Traffic Classification Using Dimensionality
Reduction and Clustering

Antti Juvonen, Tuomo Sipola
Department of Mathematical Information Technology
University of Jyvdskyld
Jyvdskyld, Finland
{antti.k.a.juvonen, tuomo.sipola} @jyu.fi

Abstract—Information security has become a very important
topic especially during the last years. Web services are becom-
ing more complex and dynamic. This offers new possibilities
for attackers to exploit vulnerabilities by inputting malicious
queries or code. However, these attack attempts are often
recorded in server logs. Analyzing these logs could be a way
to detect intrusions either periodically or in real time. We
propose a framework that preprocesses and analyzes these log
files. HTTP queries are transformed to numerical matrices
using n-gram analysis. The dimensionality of these matrices
is reduced using principal component analysis and diffusion
map methodology. Abnormal log lines can then be analyzed in
more detail. We expand our previous work by elaborating the
cluster analysis after obtaining the low-dimensional represen-
tation. The framework was tested with actual server log data
collected from a large web service. Several previously unknown
intrusions were found. Proposed methods could be customized
to analyze any kind of log data. The system could be used as
a real-time anomaly detection system in any network where
sufficient data is available.

Keywords-intrusion detection; anomaly detection; n-grams;
diffusion map; k-means; data mining; machine learning

I. INTRODUCTION

Most web servers log their traffic. This log data is rarely
used, but it could be analyzed in order to find anomalies or
to visualize the traffic structure. Acquiring the data does not
require any modifications to the actual web service, because
data logging is usually done by default. Different kinds of
log files are created, but for this study the most interesting
log is the one containing HTTP queries.

One important application for network traffic analysis is
anomaly detection. This is done using intrusion detection
systems (IDS) [1]. Many of these analyze the transport layer,
mostly TCP packet data. However, we try to find anomalies
and other information from application layer log files. HTTP
queries include this information. Many attacks, such as SQL
injections, can be detected from this layer.

Log files are in textual form. Therefore, some prepro-
cessing is needed to transform query strings into numerical
matrices. This can be done using information about n-gram
analysis, which is described in section III-A. Calculating the
frequencies of individual substrings in the data results in a
numerical data matrix.

(© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

After preprocessing, many data mining methods can be
used to visualize and analyze the logs. We perform di-
mensionality reduction and clustering. After visualizing the
results it is possible to interpret the findings and make more
detailed analysis about the web service traffic.

We propose a framework that processes textual log files
in order to visualize them. We are trying to find patterns
and anomalies using only log files containing HTTP queries.
The framework is adaptive, and individual parts of it can
be changed. For example, the choice of dimensionality
reduction method or clustering algorithm can be done based
on current needs.

The proposed methods use data mining principles, and
they work as an IDS and network traffic visualization and
analysis tool. Using the framework, we are trying to find
whether the textual HTTP query logs actually include some
information about the traffic structure. This information
could then be used to classify users and individual queries
and to find anomalies and intrusion attempts.

II. RELATED WORK

We have previously researched log data preprocessing and
anomaly detection [2], [3]. This research focused on finding
intrusions from log data. We now extend this methodology
to further analyze and cluster the structure of the traffic. This
is done by adding more accurate clustering algorithms into
the framework.

Principal component analysis has been widely used in
network intrusion detection and traffic analysis. Xu et al.
used PCA and support vector machine to reduce dimensions
and classify network traffic in order to find intrusions [4].
Taylor et al. used PCA and clustering analysis to find
network anomalies and perform traffic screening [5].

Diffusion methods have been applied in network traffic
analysis. These studies have concentrated on low-level IP
packet features. These features are numerical and the net-
work architecture differs from our study [6] [7]. Network
server logs have also been analyzed using diffusion maps
and spectral clustering [2] [3].

This is the authors’ postprint version of the article. The original print version appeared
as: A. Juvonen and T. Sipola, “Adaptive Framework for Network Traffic Classification
Using Dimensionality Reduction and Clustering,” in Ultra Modern Telecommunica-
tions and Control Systems and Workshops (ICUMT), 2012 4th International Congress
on. IEEE 2012, pp. 274-279. Available online at http://iecexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6459678&isnumber=6459638

Feature
extraction

¥

Normalization

¥

Dimensionality
reduction

¥

Classification

Figure 1. The data mining process

III. METHODOLOGY

Our overall approach is rooted in the data mining process
[8], [9]. This approach is method-centric as our research is
focused on the data processing and not business aspects. The
data mining process of our study flows as follows:

1) Data selection.

2) Extract n-gram features from the text data.

3) Normalize the feature matrix.

4) Reduce the number of dimensions to obtain low-
dimensional features.

5) Classify or cluster the low-dimensional data presenta-
tion.

6) Interpret the found patterns or anomalies.

The process is presented in figure 1.

A. Feature extraction

The log files are in text format. Therefore, it is necessary
to transform the log lines into numerical vectors which then
can be used in further mathematical analysis. We use n-gram
analysis to process log files into numerical matrices. It has
been used e.g. in judging similarity in text documents [10],
analyzing protein sequences [11] and detecting malicious
code [12].

N-grams are consecutive sequences of n characters [10].
Each log line corresponds to a feature vector containing the
frequencies of each individual n-gram found in the data. The
list of n-grams appearing in the data can be found using n-
character-wide sliding window moved along the string one
character at a time [10].

Let us consider the following example. Having two strings
containing the words anomaly and analysis, we can
construct the feature matrix in the following way:

an no om ma al ly na ys si is
1 1 1 1 1 1 0 0 0 O
I 0 0 o 1 1 1 1 1 1

In this study, 2-grams are used. However, it is possible
to use longer n-grams as well. This will of course results
in more dimensions in the matrix, because there are more
unique n-grams. The theoretical maximum number of in-
dividual 2-grams using ASCII-characters is 2562 = 65536,

but in practice this is usually not the case. This is due to the
fact that many characters are never actually used [10].

B. Normalization

Normalization ensures that the features of the input data
are in the same scale. We use logarithm for this purpose. To
avoid complex numbers, the input must be above zero. The
normalization function for a point z; in the dataset is

fn(zi) = log(z;

where X,,;, is the minimum of all the values in the
dataset.

- Xmin + 1);

C. Principal Component Analysis

Principal Component Analysis (PCA) [13] is perhaps the
best-known dimensionality reduction technique. It has many
practical applications, such as computer vision and image
compression [14].

The PCA process is explained in more detail in [14].
First we must substract the mean from the original data to
make the data have zero mean. Then the covariance matrix
must be calculated. From the covariance matrix we can then
calculate eigenvalues and the corresponding eigenvectors. If
we choose d eigenvectors that contain most of the variance,
we get a lower dimension representation of the original
data with d dimensions. This is done by choosing the
d eigenvectors as columns for a matrix, and multiplying
the mean-centered data with this matrix. For visualization
purposes it is necessary to choose either 2 or 3 dimensions,
ie. eigenvectors.

Calculating PCA is relatively simple, but it will only
work in linear cases. If the dataset is non-linear, some other
dimensionality reduction method must be used. PCA can
also give inaccurate results if there are outliers in the data.

D. Diffusion Map

Diffusion map (DM) reduces the dimensions while re-
taining the diffusion distances in the high-dimensional space
as Euclidean distances in the low-dimensional space. This
reduction is non-linear. The goal is to move from n-
dimensional space to a low-dimensional space with d di-
mensions, when d < n [15].

One measurement z; € R™ in this study corresponds
to one line in the log file. Given the dataset X =
{z1, 2, w3, xzn} the affinity matrix W(z;, z;) =
—llzi—z;]|?

€
ments. Here we have used the Gaussian kernel. Matrix P =

W LK represents the transition probabilities between the
measurements. Next, the matrix D collects the row sums to
its diagonal. Using the singular value decomposition (SVD)
of matrix P = D-2WD~% we obtain the eigenvectors v
and eigenvalues \j.

exp () describes the affinities between measure-

The diffusion map maps the measurements
x; to low dimensions by giving each high-
dimensional point coordinates in the low dimensions:
[)\1’()1 (l‘l), /\gvg(xi) . /\dvd(xi)]. These new
coordinates lose some of the information contained in the
original dataset. However, the accuracy is usually good
enough for later classification. Even though there is loss of
information, the classification problem becomes easier.

r; —

E. Traffic clustering using k-means algorithm

We use cluster analysis to divide network traffic into
meaningful groups. In this way we can capture the natural
structure of the data [16].

K-means algorithm was introduced in 1955 and huge
number of other clustering algorithms have been introduced
since then, but k-means method is still widely used [17].
It is a prototype-based clustering technique [16]. Given the
original data X = =z;, where ¢ = 1,..,n, the goal is to
cluster the data points into k clusters. The mean of cluster
k is now py, and the mean squared error (MSE) between a
data point and the cluster mean is ||z; — u||?. This leads to
an optimization problem where the MSE for each datapoint
in each cluster must be minimized.

The problem can be solved following these steps [18]:

1) Select initial centers for k clusters.

2) Assign each datapoint to its closest cluster centroid.

3) Compute the new cluster centers by calculating the
mean of the datapoints in each cluster.

Steps 2 and 3 are repeated until a stopping criterion is
met. Usually this means that the partitioning has not changed
since the last iteration, and thus a local optimum solution
for the problem has been found.

Choosing the number of clusters is not trivial, but there are
many methods for calculating the number of clusters, such
as Davies-Bouldin index, described in [19]. This algorithm
takes into account both scatter within a cluster and separation
between different clusters. Davies-Bouldin index is used in
this study to determine the number of clusters for each
resource.

The algorithm can give different results depending on the
initialization, because it only finds the local optimal solution.
This can happen especially when using random initialization.
However, this problem can be overcome by running k-means
multiple times and choosing the clustering results that gives
the smallest squared error [17]. There are also many other
algorithms for choosing the initial cluster centroids.

IV. EXPERIMENTAL SETUP

Figure 2 shows the architecture of the web service that
was analyzed. It contains many servers that offer the same
service to users using load balancing. Proprietary log files
were acquired from this service. These files then need to
be preprocessed into numerical matrices. The data and this
process are described in this section.

Resource 1

Resource 2

Resource 3

Figure 2. Experiment architecture.

A. Data acquisition

The data have been collected from a large web service.
Apache web servers are used, and they log data using
Combined Log Format, example of a single log line:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]

"GET /resource.php?parameterl=valuel
¶meter2=value?2

HTTP/1.1"

200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0

(Symbian0S/9.2;...)"

For this analysis, the HTTP query part is used because
it contains the only information that a user can input. This
offers possibilities for attackers. The other information, such
as time, can be used when further analyzing individual
log lines (e.g. for finding anomalies or attacks). On the
other hand, HTTP query parameters and their values are
dynamic and changing, offering valuable information about
this dynamic web service. Analyzing this information will
explain a lot about the structure of the traffic. The parameter
values in data used in this study were dynamic and changing,
and also not always human-readable. Therefore, analyzing
these fields has to be done automatically with mathematical
methods.

B. Data preprocessing

The first step is to select the data for analysis. The original
log file contains approximately 4 million log lines. However,
most of these lines contain only static queries. Static lines
do not contain changing parameter values. These lines do
not offer a lot of information, because they are practically
identical in the used dataset. In addition, static lines do
not contain information about user input, meaning it is
not possible to detect attacks from those log lines alone.
On the other hand, dynamic web resources are changing
and also vulnerable, so dynamic lines containing parameters
and parameter values are interesting and can offer more
information about the web service. Therefore, static log lines
are filtered out, leaving only approximately 221 000 lines
to be inspected and clustered. This data selection reduces
the size considerably and creates a database of the most
interesting aspects of the log files.

After the first filtering stage, log files are divided into
smaller files according to resource URI. This is because
different resources accept different parameter values, so
they do not have much to do with each other. This makes
anomaly detection from full data very difficult and inac-
curate. However, traffic structure inside single resource is
more consistent. After this division, smaller logfiles can be
analyzed independently. It makes sense to further analyze
the largest log files, because some of the resources contain
only a few lines. These lines have to be omitted.

Finally, in order to create data matrices out of textual log
data, n-gram analysis is performed. This process is explained
in III-A.

V. RESULTS

For this research, 3 relatively large resources are selected
for further analysis and clustering. Resource 1 contains
10935 lines and 414 dimensions, and is the simplest in
terms of HTTP query parameters. Resource 2 contains only
2982 lines, but the number of dimensions is 3866, which
makes analysis challenging. Also, the parameters are clearly
not human-readable, i.e. it is impossible to say anything
about the queries by looking at the parameter string alone.
Resource 3 is the largest, including 21406 lines and 991
dimensions.

All the resources are analyzed using the proposed frame-
work. The feature data are normalized with the logarithm
function. PCA and diffusion map reduce the dimensionality
of the normalized feature matrices. Clustering then reveals
the structure of the data and facilitates the interpretation of
the log files.

Resource 1 contains 10935 lines and 414 dimensions. The
results for diffusion map and principal component analysis
are presented in figures 3 and 4, respectively. This resource
is a simple example, mainly useful in validating that the
methods do give satisfactory results. The only difference
is that DM separates the data points more clearly. Due to
this separation we get 3 clusters, instead of 2 as in PCA.
The biggest cluster contains varying parameter values. The
parameters in smaller clusters are almost the same within
that cluster. However, this behavior is easy to see directly
from the log lines. The framework visualizes the traffic well,
but in this case we do not obtain any new information about
the data.

Resource 2 is the smallest in this research, containing only
2982 requests. However, the number of dimensions is 3866.
This means that there are more dimensions than data points,
which is always a problem in classification tasks. Despite
that, we obtained clear results. The DM and PCA results
presented in figures 5 and 6. The results are essentially
identical, figures look slightly different but the clustering is
exactly the same. This might mean that variables are linearly
dependent, otherwise PCA would not work well. The log
lines themselves are not human-readable, containing error

3rd coordinate

= i i i i i i i i
-05 0 05 1 15 2 25 3 35
2nd coordinate

Figure 3. Resource 1, diffusion map.

25 - .
O Cluster 1, N=9686
% Cluster 2, N=1249

15

2nd PC
[e}
o

05

1 i i i i i i i i
35 -3 -25 -2 -15 -1 -05 0 05 1

Figure 4. Resource 1, PCA.

tickets that have a seemingly random code as the parameter
value. However, as can be seen from the figures, there are
clearly two distinct clusters that can be seen using both
dimensionality reduction methods. This behavior was not
previously known and requires more detailed analysis with
the administrator of the web service.

Resource 3 is the largest with 21406 lines and 996
dimensions. It also shows that DM (in figure 7) and PCA (in
figure 8) can sometimes give very different results. Normal
parameter values in this resource are long and varied. This
results in PCA not being able to clearly distinguish any
clusters. For this reason, k-means clustering was not per-
formed for resource 3 PCA datapoints. However, with DM
the results are very meaningful. Normal traffic clearly forms
it’s own cluster, while 2 other groups are apparent. Cluster
2 with 5 datapoints does not contain anything malicious, but
is slightly different from other normal datapoints. The most
interesting finding in this data is cluster 3, which contains
4 lines. All of these lines contain an SQL injection attack,
where an attacker tried to include malicious SQL queries as
parameter values. The 2nd DM coordinate clearly separates
attacks from rest of the data, meaning that in this case only
one dimension is needed for anomaly detection.

O Cluster 1, N=1918
x Cluster 2, N=1064

3rd coordinate

-0.01

-0.02

0.03 i i i i i i i i
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
2nd coordinate

Figure 5. Resource 2, diffusion map.

O Cluster 1, N=1918

2nd PC

Figure 6. Resource 2, PCA.

In all of the figures, except PCA for resource 3, it can
be seen that the separation of clusters is clear. A simple
clustering method such as spectral clustering or decision tree
could be used.

VI. CONCLUSION

We presented a framework for preprocessing, clustering
and visualizing web server log data. This framework was
used for anomaly detection, visualization and explorative
data analysis based only on application layer data. Individual
parts of the architecture can be changed for different results.
For example, k-means clustering can be replaced with hier-
archical linkage clustering method.

The results clearly indicate that there are traffic structures
that can be visualized from HTTP query information. The
data forms distinct clusters and contains anomalies as well.
The sensitivity for outliers creates some problems for PCA,
which means that it can be challenging to use it for anomaly
detection. Diffusion maps give good results, but more re-
search would have to be done to get more information about
performance issues. In some cases the results for PCA and
DM are nearly identical, while in other cases they differ
greatly. PCA is faster but cannot be used with non-linear

200

O O

-200

-400

-600

-800

3rd coordinate

-1000

-1200

O Cluster 1, N=21397
1400 X Cluster2, N=5
+ Cluster3,N=4

~1600 R i i i i i i i
-1400 -1200 -1000 -800 -600 -400 -200 0 200
2nd coordinate

Resource 3, diffusion map.

Figure 7.

2nd PC

Figure 8. Resource 3, PCA.

data. DM seems to work in most situations but can be too
slow.

Traffic clustering can give new information about the
users of a web service. This information could be used to
categorize users more accurately. This gives opportunities
for more accurate advertising or offering better content for
users. Finding anomalies gives information about possible
intrusion attempts and other abnormalities.

To make the framework more usable, it should be auto-
matic and work in real-time. More research is needed to
find the most generally usable algorithms for each phase in
the architecture. In addition, log data tends to be high in
volume, so performance issues might become a problem.
For dimensionality reduction the number of dimensions is
not trivial. Also, the number of clusters must be determined
depending on the chosen clustering algorithm. Real-time
functioning requires changes in preprocessing and limits
the dimensionality reduction options. For this purpose, PCA
might be a good method, since projection of new points into
lower dimensions is simply a matter of matrix multiplication.
However, the limitations mentioned previously still apply.

Using data mining methods, underlying structure and
anomalies are found from HTTP logs and these results can
be visualized and analyzed to find patterns and anomalies.

(1]

(2]

(3]

(4]

(1]

(6]

(71

(8]

(9]

REFERENCES

K. Scarfone and P. Mell, “Guide to intrusion detection and
prevention systems (idps),” NIST Special Publication, vol.
800, no. 2007, p. 94, 2007.

T. Sipola, A. Juvonen, and J. Lehtonen, “Anomaly detection
from network logs using diffusion maps,” in Engineering
Applications of Neural Networks, ser. IFIP Advances in
Information and Communication Technology, L. Iliadis and
C. Jayne, Eds. Springer Boston, 2011, vol. 363, pp. 172-181.

——, “Dimensionality reduction framework for detecting
anomalies from network logs,” Engineering Intelligent Sys-
tems, 2012, forthcoming.

X. Xu and X. Wang, “An adaptive network intrusion detection
method based on pca and support vector machines,” Advanced
Data Mining and Applications, pp. 731-731, 2005.

C. Taylor and J. Alves-Foss, “Nate: N etwork analysis of a no-
malous t raffic e vents, a low-cost approach,” in Proceedings
of the 2001 workshop on New security paradigms. ACM,
2001, pp. 89-96.

G. David, “Anomaly Detection and Classification via Diffu-
sion Processes in Hyper-Networks,” Ph.D. dissertation, Tel-
Aviv University, 2009.

G. David and A. Averbuch, “Hierarchical data organization,
clustering and denoising via localized diffusion folders,”
Applied and Computational Harmonic Analysis, 2011.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD
process for extracting useful knowledge from volumes
of data,” Commun. ACM, vol. 39, pp. 27-34, November
1996. [Online]. Available: http://doi.acm.org/10.1145/240455.
240464
——, “From data mining to knowledge discovery in
databases,” Al magazine, vol. 17, no. 3, p. 37, 1996.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

M. Damashek, “Gauging similarity with n-grams: Language-
independent categorization of text,” Science, vol. 267, no.
5199, p. 843, 1995.

M. Ganapathiraju, D. Weisser, R. Rosenfeld, J. Carbonell,
R. Reddy, and J. Klein-Seetharaman, “Comparative n-gram
analysis of whole-genome protein sequences,” in Proceedings
of the second international conference on Human Language
Technology Research. Morgan Kaufmann Publishers Inc.,
2002, pp. 76-81.

T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-
gram-based detection of new malicious code,” in Computer
Software and Applications Conference, 2004. COMPSAC
2004. Proceedings of the 28th Annual International, vol. 2.
IEEE, 2004, pp. 41-42.

H. Hotelling, “Analysis of a complex of statistical variables
into principal components.” Journal of educational psychol-
ogy, vol. 24, no. 6, pp. 417441, 1933.

L. Smith, “A tutorial on principal components analysis,”
Cornell University, USA, vol. 51, p. 52, 2002.

R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and
Computational Harmonic Analysis, vol. 21, no. 1, pp. 5-30,
2006.

P. Tan, M. Steinbach, and V. Kumar, “Cluster analysis: Basic
concepts and algorithms,” Introduction to data mining, pp.
487-568, 2006.

A. K. Jain, “Data clustering: 50 years beyond k-means,”
Pattern Recognition Letters, vol. 31, no. 8, pp. 651-666, 2010.

A. K. Jain and R. C. Dubes, Algorithms for clustering data.
Prentice Hall., 1988.

D. Davies and D. Bouldin, “A cluster separation measure,”
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, no. 2, pp. 224-227, 1979.

