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Abstract—Modern artificial intelligence based medical imaging
tools are vulnerable to model fooling attacks. Automated medical
imaging methods are used for supporting the decision making
by classifying samples as regular or as having characters of
abnormality. One use of such technology is the analysis of
whole-slide image tissue samples. Consequently, attacks against
artificial intelligence based medical imaging methods may di-
minish the credibility of modern diagnosis methods and, at
worst, may lead to misdiagnosis with improper treatment. This
study demonstrates an advanced color-optimized one-pixel attack
against medical imaging. A state-of-the-art one-pixel modification
is constructed with minimal effect on the pixel’s color value.
This multi-objective approach mitigates the unnatural coloring
of raw none-pixel attacks. Accordingly, it is infeasible or at
least cumbersome for a human to see the modification in the
image under analysis. This color-optimized one-pixel attack poses
an advanced cyber threat against modern medical imaging and
shows the importance of data integrity with image analysis.

I. INTRODUCTION

Correct functioning of health care technology is essential for
modern societies. As stated in the EU’s Cybersecurity Strategy
for the Digital Decade [1], cross-sector interdependencies are
very strong in the health care domain, and the health care
domain is heavily reliant on interconnected networks and
information systems. In that sense, cybersecurity has an impor-
tant role in the digitalized health care domain. Our dependence
on it has made it a lucrative target for malicious actors.
The International Criminal Police Organization (INTERPOL)
has made the remarkable observation that during the ongoing
COVID-19 pandemic, cyberattacks are re-targeted against the
critical health infrastructure [2].

The global digital transformation with the development
of Machine Learning (ML) and Deep Learning (DL) based
solutions has provided a possibility to automatically process
pathological samples. Nam et al. define Computer-Aided
Pathology (CAP) as “computational diagnosis system or a
set of methodologies that utilizes computers or software to
interpret pathologic images” [3]. Digital pathology can be
defined as analyzing digitalized whole-slide images of tissue
samples using Artificial Intelligence (AI) [4]. Solutions based
on ML and DL (subsets of AI) are progressively utilized
for decision making and prediction in medical imaging [5].
Among other things, enablers for such utilization are: (i) there
exists an abundant amount of medical data available globally
for research and development activities [6], and (ii) medical
data is reasonable formed and labeled [7].
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Fig. 1. Basic idea of normal use of AI-based digital pathology.

A typical digital pathology task includes classification of
whole-slide images as being either healthy or containing signs
of cancer [4]. This fast pre-screening of the images increases
efficiency and saves the doctor’s and patient’s time. The
classifiers ordinarily use an ML solution to automatically learn
and make predictions about the images. Typically, the input
consists of digitized images, and the ML solution outputs
a prediction in the form of confidence score. This score is
sometimes equivalent to a probability of the image containing
abnormalities. As with all machine learning, training a ML
model is never perfect. Getting false positives is a real prob-
lem, and because of it, the results should not be trusted without
expert interpretation. Fig. 1 illustrates the basic idea of an AI-
based digital pathology solution. A classifier is trained using
existing images, and then the classifier is deployed to make
predictions about new images.

As can be seen, ML and DL solutions are widely used for
diagnosis using digital imaging. This increases the threat of
using digital imaging as a target surface for cyberattacks. If
an attacker reaches access to the image data, the automated
diagnosis can be fooled. Adversarial examples are images that
cause unwanted behavior in the image classifier. Furthermore,
these threats are real in medical imaging [8], [9]. Following
categories of threats have been identified for model fooling
against medical imaging: (i) adversarial images, (ii) adversarial
patches, (iii) one-pixel attacks and (iv) training process tam-
pering [10]. The first three are in the category of adversarial
examples. They are specifically crafted images that deceive a
classifier to make false predictions about input images. If such
an attack does not need knowledge of the inside workings of
the classifier, it is known as a black-box attack, because the
only output needed is the prediction confidence score of the
classifier [10], [11]. When an adversarial example is given
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Fig. 2. Adversarial attack against a classifier.

to a classifier analyzing digital pathology images, the subtle
changes cause an image of healthy tissue to be classified as
having signs of cancer. There have been successful attempts
at fooling image classifiers with imperceptible adversarial
examples. For example, Deng et al. used multi-objective
optimization to attack against black-box classifiers [12]. Fig. 2
illustrates the idea of using malicious adversarial examples to
fool the pre-trained classifier. The training set can be the same
as in the ordinary scenario. The deployed classifier has not
been changed in any way; it is simply receiving an image that
has been altered somehow to produce wrong predictions. In
practical terms, if an attacker can modify an image before it is
input to an in-production classifier, the medical system would
give an incorrect answer, thus endangering the health of the
patient. Such a system could be related to whole slide image
analysis, X-ray image analysis, or any other imaging modality
where an automated classifier is used, especially in the case
of a neural network.

One-pixel attack based on evolutionary optimization was
introduced by Su et al. [13]. The basic idea is to find the
coordinates and color values for a pixel that is placed on an
image so that the classification result of the image is flipped.
Evolutionary optimization is one way to find the best possible
pixel that causes this effect. This heuristic black-box attack
has been successful in deceiving image classifying neural net-
works [14]. One-pixel attacks can be studied using adversarial
maps which record pixels vulnerable to this attack. Recent
research has proposed that these areas correspond closely to
the neural network’s saliency maps [15]. Although there is an
emerging understanding on how a single pixel modification
influences the neural network [16], this lack of robustness
leaves room for imaginative ways of exploiting them while
doing image classification [17]. A related method to the single
pixel modification is the use of sparse perturbations [18].
It should noted that pixel attacks are effective against well-
known standard datasets and neural network architectures [19].

This research paper aims to present a way of creating more
imperceptible one-pixel attacks. In our earlier study [20], we
showed that the TUPAC16 dataset [21], [22] containing breast
cancer tissue samples could be modified so that a single pixel
could deceive a breast cancer classifier. However, in the origi-
nal attack the color scheme of the attack pixel was modified so
dramatically that the result was easily perceptible by a human
observer. The bright yellow pixels were easy to spot; although,
when looked at a distance, the pixel became less prominent.
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Fig. 3. Finding an adversarial image where only one pixel is changed.

In this current study, the advanced color-optimized one-pixel
attack against medical imaging is demonstrated. Within this
state-of-the-art attack the color of a particular pixel is subtly
changed in order to fool the automatic classifier, while still
concealing the modification from human eyes.

II. METHODS

A. Finding adversarial examples

We use evolutionary optimization to find adversarial exam-
ples where only one pixel is changed, following the exam-
ple of Su et al. [13]. However, our optimization objective
also contains a component that skews the results towards
imperceptible pixel colors. The chosen optimization method is
effective enough for the purpose of finding attack pixels, as the
main bottleneck is the performance of the classifier. In other
words, the main approach of this research is to find one-pixel
perturbations e(x) that cause an image x to be misclassified by
classifier g while still being imperceptible to the human eye.
Fig. 3 illustrates the idea behind the one-pixel attack against a
trained classifier. The target image is used as a starting point
on which a randomized set of one-pixel attacks is performed.
Then this population of attacks is evaluated using the trained
classifier. Based on the results, the differential evolution will
iterate and find the most suitable one-pixel attack so that the
confidence score produced by the classifier differs maximally
from the confidence score of the plain target image. As a result,
an adversarial image is created, which can be used for one-
pixel attack to fool the classifier.

Differential evolution was chosen as the multi-objective
optimization method to find attack vectors that best lower
the confidence score of the neural network model while also
optimizing the color values of the attack vector. The goal of
the color value optimization is to blend the attacked pixel into
the image as unnoticeably as possible. It is assumed that the
pixel is more unnoticeable when its color is close to the mean
value of the neighboring eight pixels. Below, we follow the
definitions of Su et al. [13] and introduce a novel objective
function resembling the one used by Su et al. [19].

B. Cost function

First, a basic mathematical framework for image classifi-
cation and additive attacks is presented so that the objective
function can be crafted. Input vectors x = {x1, . . . , xn}
describe the raw n pixels of a target image belonging to the
class k. Let g be the classifier that discriminates between



classes. The output of gk(x) is the probability of input x
belonging to the class k. A perturbation attack against x is
represented by the attack vector e(x) = {e1, . . . , en}, which
contains the n pixels corresponding to the target image. This
presentation would allow for a more general perturbation
attack. However, in this research the one-pixel attack is in
focus, so only one of the pixels in the vector differs from
zero.

To create a more imperceptible alteration, we assume that
the closer the color of the attack pixel is to the surrounding
eight pixels, the more imperceptible it is. A perfect attack
would have a color as close to their average as possible. We
propose the following color scoring function. Here h(x) is the
color score, and it is calculated as the root-mean-square error
(RMSE):

h(x) =

√
(cr − crµ)2 + (cg − cgµ)2 + (cb − cbµ)2

3
,

where cr, cb, cg are the color values of the attack vector scaled
within the range [0, 1] and crµ, cgµ, cbµ are the means of
the attack vector’s surrounding pixels’ color values. The used
root-mean-square error color scoring function was adequate
to penalize large color differences. The L2 norm and mean
squared error (MSE) were also considered but the results did
not change considerably.

Consequently, the multi-objective cost function f for the
wanted class k can be defined as a combination of the neural
network’s confidence score and the color score:

fk(x) = wnngk(x) + wch(x),

where the neural network’s confidence score g(x) is multiplied
by the weight wnn associated to the score, given the input x,
and h(x) the corresponding color score, which is multiplied
by the weight wc. These weights can be used to make one
objective more desirable than the other. Finally, the optimiza-
tion problem can be defined as follows. The term ||e(x)||0
expresses the number of non-zero elements in the vector. Here
the constraining number d = 1, so that we want to find only
one pixel.

minimize
e(x)∗

fk(x+ e(x))

subject to ||e(x)||0 ≤ d

In practical terms, the one-pixel attack vectors e(x) are
presented with 5-dimensional image modification vectors ê
that contain the x and y coordinates and the three RGB values
cr, cg , cb. Conversion from ê to e can be thought as a one-pixel
additive operator E, which creates a one-pixel attack mask
image at the specified coordinates and with the corresponding
color. Thus, the practical optimization problem is to find the
optimal ê(x)∗:

minimize
ê(x)∗

fk(x+ E(ê(x)))

subject to ||E(ê(x))||0 ≤ d.

C. Differential evolution

The differential evolution is initialized by creating the
population X0 = {x1, . . . ,xN} ∈ ZN×D. Here N denotes the
size of the population and D the dimension of a population
vector. In our case, D = 5. The coordinate vectors (x, y)
are randomly sampled from a discrete uniform distribution
between the interval [1, 62] due to image width and length
belonging to interval [0, 63]. The surrounding pixels around
these coordinates are extracted from the original image, and
the mean cµ of each color value is calculated based on the
eight surrounding pixels. The corresponding RGB values for
each coordinate vector are sampled from a discrete uniform
distribution inside the interval [cµ−50, cµ+50]. This is carried
out to help the color optimization by initializing the attack
vector’s color values to match the adjacent color values in the
target image.

After the initialization, the differential evolution process
evolves the vector population towards the best attack vector
through two processes: (i) mutation and (ii) crossover. We
use the SciPy implementation of the method [23] with some
modifications to obtain information about evolution progress
and to create a new population initialization method. During
the differential evolution, new trial vectors a are created by
mutating the currently best attack vector abest (meaning the
one that has achieved the highest cost function score) by the
difference of two random vector components a1,a2 from the
population:

a = abest +m ∗ (a1 − a2),

where m is the so-called mutation value that controls the
number of mutations happening during the evolution. Random
indices ri (where i ∈ {1, . . . , D}) are drawn from a continuous
uniform distribution over the interval [0, 1). The random
numbers ri are then compared to the crossover factor C, which
determines if the new mutant component continues to the trial
vector or whether the currently best component carries over.
The fitness of the population and the new vectors is evaluated
using the cost function f , and the best N candidates are
accepted to the next population [24], [25].

Maximum iterations for the evolution are set to 20, and if
the standard deviation of the cost function f values across the
population is smaller than the mean of the cost function values

µ =
1

N

N∑
i=1

fi

multiplied by the tolerance factor t, the evolution convergence
check is carried out so that progress is stopped before reaching
the iteration limit:√√√√ 1

N

n∑
i=1

(fi − µ)2 ≤ t ∗ |µ|,

where fi is the cost function value for a population member
and t is the tolerance factor [25].
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Fig. 4. Optimization process.

Fig. 4 shows a schematic presentation of the optimization
process presented above. The trial image modification vectors
have five components as seen in the upper part of the figure.
The two optimization objectives are measured, and finally the
scores are combined as the result of the multi-objective cost
function. This way the differential evolution process gets an
evaluation of how successful the trial vectors are in the task.

III. EXPERIMENT SETUP

The goal of the experiment was to find one-pixel attacks
against several pathology images. The attack was targeted
against a classifier trying to identify images containing mitosis
activity. An attack means that one target image is taken
from the pool of preprocessed images, and the optimization
procedure is used against that image. We conducted thousands
of attacks in the experiment.

A. Dataset

The dataset used in the experiment was the TUPAC16,
which contains pathology images of breast tissue [21], [22]. As
the image format is very versatile with multiple zoom levels,
preprocessing was performed to extract correctly sized images.
The whole-slide images of the dataset were preprocessed into
64 by 64-pixel images in PNG format. Due to the number
of images and the time-consuming evolution, subsets of the
dataset are randomly chosen during each experiment. The
dataset contains labeling for the images, either being normal,
or containing signs of mitoses, which could indicate the
presence of cancerous tissue.

B. Environments and tools

We have used the IBM MAX Breast Cancer Mitosis Detec-
tor and the deep-histopath framework it is based on as our at-
tack target [26], [27]. Its main purpose is to classify pathology
images, predicting the possibility of cancerous growth. The
Breast Cancer Mitosis Detector takes images of 64×64 pixels
as input, and returns a confidence score as an output via a
REST API. The output represents the probability of the image
containing mitosis. It was specifically built for the TUPAC16
dataset utilizing a modified ResNet-50 neural network model
as the classifier. The network was trained using preprocessed
images that were centered at labeled mitotic activity. The deep-
histopath framework provides the preprocessing code and the
code needed to train the classifier [27]. However, we did not
train our own classifier but used the pre-trained model.

The Docker packaged classifier was wrapped so that it acted
as a black-box classifier via Python code. We have chosen this
classifier because it has been made publicly available, and
it uses the same TUPAC16 dataset as its training material.
This should mean that it will classify these images with high
precision in normal circumstances. Our purpose is not to
criticize this classifier in particular but to use one that has
been developed independently from us.

The experiment was run on a High Performance Computing
(HPC) server, which utilizes four Tesla V100 32GB GPUs,
with the official driver version 450.80.02, and four 64-core
Xeon Gold 6130 CPUs and 768 GBs of RAM for computing.
The model was loaded using deep-histopath framework and
MAX Breast Cancer Mitosis Detector model assets were
loaded to the framework. The experiment script was run using
Python version 3.7.2 programming language framework. The
same Python framework was used to save the resulting attack
vectors and adversarial images, and to produce the figures in
this paper.

C. Two attacks

The goal of the research is to flip the classification of one
class to the other by the one-pixel attack. The experiments
are divided into two attack categories: (i) mitosis-to-normal
and (ii) normal-to-mitosis. Firstly, the goal of the optimization
during mitosis-to-normal experiment is to find an attack vector
that reduces neural network’s confidence the most while also
keeping the color error low. Secondly, in the normal-to-mitosis
experiment, the confidence score needs to be maximized, while
the color error is again minimized. The confidence score is
subtracted from 1, since it is the maximum value for the
confidence score, and it allows to the optimization function
to reduce the total score of the functions.

Multiple experiments were run, where combinations of
different weights wnn and wc and color score functions
were tried, along with other parameters such as mutation
factor, crossover factor and population size in the differential
evolution algorithm. The success rate of the attacks were
statistically analyzed by measuring the confidence scores of
the target images and the adversarial images.



Fig. 5. Example of mitosis-to-normal attack. The original image on the left
and the modified image on the right. Notice the circled brown pixel on the
center-right.

IV. RESULTS

A. Mitosis-to-normal attack

It was found during mitosis-to-normal attack experiments
that the neural network confidence score was minimized the
most and the modified pixel was less distinguishable when
wnn was set to 0.6 and wc to 0.4. These weights were empir-
ically selected as they produced the most visually concealed
attack pixels. The more important objective of fooling the
neural network is given a bigger weight, while still giving
a quite large weight to the objective of finding the most un-
noticeable color. The differential evolution hyperparameters’
mutation value m was set to 0.5, crossover value C to 0.7
and the number of members in the population to 1,500. At
the beginning, 1,771 images were randomly selected from the
dataset, and the experiment ran for 36 hours.

Fig. 5 shows an example of a successful attack, where the
confidence score was significantly lowered to the point that
instead of labeling the image with mitosis activity, the neural
network was manipulated to label the image as normal cell
activity. In this example, the brown pixel is much closer to
the characteristic red of the raw image.

The second component of the objective function aims to
alter the color of the pixels. The colors of the pixels that are
inserted into the original image during the attack vary widely,
but the most successful attacks are brown colored pixels with
red and green values around 100 and blue values near zero.

Fig. 6 shows the confidence scores before the attack and
after the attack in boxplot visualization. The scores before the
attack are close to the classification results of 1.0. It can be
seen that the attack has a significant effect to some of the target
images. The original scores of the target images are near the
1.0 level, which signifies that the image contains mitoses. The
one-pixel attacks are able to change the label of the best 20%
down below at least 0.67, some reaching almost 0.

After conducting the attack, the minimum confidence score
achieved in the experiment was 0.02, and 10th percentile of
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Fig. 6. Original confidence scores and confidence scores after the attack, with
25th percentile to 75th percentile inside the boxes, the whiskers indicating no
more than the 1.5× interquartile range and outliers drawn as circles.

TABLE I
NEURAL NETWORK CONFIDENCE SCORE STATISTICS FOR

MITOSIS-TO-NORMAL ATTACK.

Before attack After attack

Maximum 0.99 0.96
20th percentile 0.94 0.67
10th percentile 0.92 0.12
Minimum 0.90 0.02
Mean 0.97 0.78
Median 0.98 0.94
Standard deviation 0.03 0.32

the score is near 0.1. The majority of the attacks fail to achieve
scores below 0.5, with 20th percentile of scores reaching 0.67.
The exact statistical values of image classification before and
after the attack are listed in the Table I.

B. Normal-to-mitosis attack

The normal-to-mitosis attack proved much more difficult;
the impact to neural network confidence on target images was
much lower than in the previous attack. The attack procedure
is the same but here the target images have a confidence score
near normal tissue and the goal is to make it higher with
the one-pixel attack. The confidence score difference between
attacked and original image is already low, so the weight wnn
associated with the neural network was set high at 0.7 and
color weight set at 0.3. This means that the goal of optimizing
the color might not be as successful. The differential evolution
hyperparameters were set the same as in the previous attack.
The attack experiment ran for 48 hours, and an attack was



Fig. 7. Example of normal-to-mitosis attack. The original image on the left
and the attacked image on the right. Notice the circled black pixel at the
bottom-center.

TABLE II
NEURAL NETWORK CONFIDENCE SCORE STATISTICS FOR

NORMAL-TO-MITOSIS ATTACK.

Before attack After attack

Maximum 0.090 0.43
99th percentile 0.0074 0.038
95th percentile 0.00086 0.0063
Minimum 0.000001 0.000001
Mean 0.00048 0.0021
Median 0.00001 0.00004
Standard deviation 0.0042 0.016

performed on 2,849 randomly selected images from the pool
of preprocessed whole-slide images.

Fig. 7 shows an attack where the confidence score was
raised to the point that the neural network is no longer fully
confident that the image could be labeled as normal, but the
attack fails to twist the neural network’s prediction to the
opposite label. The color seems to be close to the environment,
but the environment itself gives the pixel away. This, combined
with the difficulty of flipping the classification, causes the
attack to be less successful.

Again, the characteristics of the attack pixels proved to be
interesting. The attacks mostly replaced a pixel in the image
with a completely black pixel that is injected close to other
dark colored pixels.

Fig. 8 shows the confidence scores before the attack and
after the attack in boxplot visualization. The difference to
the previous scenario is clearly visible. The initial scores are
almost all near 0, so the boxes are barely visible. The attack
scores do not achieve even the 0.5 level.

The maximum confidence score from an attack reaches 0.43,
a vast majority of the attacks do not manage to impact the
neural network’s predictions; 99th percentile reaching 0.038.
Other statistical values are listed in the Table II. Please note
that here the attack direction is from low to high scores.
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Fig. 8. Original confidence scores and confidence scores after the attack, with
25th percentile to 75th percentile inside the boxes, the whiskers indicating no
more than the 1.5× interquartile range and outliers drawn as circles. Note
that most of the data is close to 0, so only outliers are visible.

V. CONCLUSION

Medical imaging applications based on AI are extensively
used in the medical imaging to recognize tumors. Although
neural network based classification solutions are effective for
detecting cancerous cell growth, there is an option to mislead
the classification algorithms and cause false prediction results.
The analysis methods related to medical imaging are not safe
from model fooling attacks. Furthermore, different imaging
modalities such as X-ray images are as feasible targets as
the breast cancer tissue samples used in this research. One-
pixel attack is a state-of-the-art example of the modern model
fooling attacks. Automatic classification can be fooled by
affecting nothing but one pixel of the image under analysis.
This also raises concerns about the robustness of automatic
analysis systems.

This study shows that a one-pixel attack against medical
imaging can be modified to appear more imperceptible to a
human observer, while the attack is still effective. This result
can be achieved by changing the optimization cost function
to take into account the pixel’s color scheme in order to
preserve the modification to the medical image unnoticeable
to a human observer. As seen in the displayed examples and in
the statistical analysis, the attacks can be successful in fooling
the classifier.

The multi-objective cost function was useful because it
turned the adversarial images and the attack pixels in them to
resemble the natural coloring surrounding the pixel. It seems
that it is possible to skew the one-pixel attack towards a state
where the attack pixel appears more imperceptible. However,
the attacks are not always as successful as when using only the



one-pixel objective. This is expected as the two objectives are
conflicting, since the plain one-pixel attack seems to produce
brighter pixels.

These adversarial images can appear quite natural to the eye,
especially in the case of mitosis-to-normal attacks. Even in the
normal-to-mitosis case the pixels near high-contrast edges can
appear deceiving. If such a classifier is used for pre-screening,
and a human tries to quickly assess the situation, the pixel
might go unnoticed. At the least, the conflicting opinion of
the system and the human could cause confusion and misuse
of resources.

As the attack method relies on the non-robustness of the
classifier, this methodology is limited by the vulnerability of
the classifier. The methodology the classifier utilizes has an
effect on how successful the one-pixel attack is. One could
imagine that neural networks, as in this paper, are more
vulnerable but, nevertheless, other types of classifiers could
have robustness issues.

Our results show the variable nature of the classifier: not
all attacks were successful. The mitosis-to-normal attacks pro-
duced some quite successful adversarial images. The normal-
to-mitosis attack proved again to be more difficult. This could
be caused by the generally lighter color scheme in those
images. As the classifier is trained to identify areas containing
dark mitoses, the normal images could have a more general
and variable look, which is more difficult to make look like
an actual mitosis situation.

The brown color of the attack pixels suggests that in order
to fool the network, the pixel needs to be sufficiently bright.
However, with the objective of fooling a human observer the
pixel needs to blend into the red-brown surroundings. On the
other hand, the black attack pixels might indicate that it is
indeed the sharp color contrast impulse that fools the classifier.
As for the human observer, dark pixels among other dark areas
or edge areas could be difficult to recognize.

The recent real-life attacks have demonstrated the motive
for attacking against the medical domain and the medical
domain can be seen as valuable target. This study demonstrates
a vulnerability of the artificial neural network technology.
These results should not be seen as pessimistic against the
usage of automated image analysis systems. Rather, these
constraints should be understood more deeply when utilizing
these systems in real-life scenarios. Moreover, an extreme
concern should be focused on the requirement of data integrity
because even small changes can produce severe changes in
predictions.

As a next step, we propose further study of the objective
function to find better ways to optimize the conflicting goals
of accuracy and imperceptibility. Further developments in the
optimization methods might reveal a faster way of finding the
most unnoticeable attack. Another path forward is to study
the mechanisms by which one-pixel attacks succeed, and if
the form of the objective function affects this understanding.
Different classifiers could be tested to evaluate whether the
attack is successful in a wider context. Understanding both the
attack and defense helps us to create more robust classifiers.
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