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Abstract

Learning induces structural changes in the brain. Especially repeated, long-term behaviors, such as
extensive training of playing a musical instrument, are likely to produce characteristic features to brain
structure. However, it is not clear to what extent such structural features can be extracted from magnetic
resonance images of the brain. Here we show that it is possible to predict whether a person is a musi-
cian or a non-musician based on the thickness of the cerebral cortex measured at 148 brain regions en-
compassing the whole cortex. Using a supervised machine-learning technique, we achieved a significant
(κ = 0.321, p < 0.001) agreement between the actual and predicted participant groups of 30 musicians
and 85 non-musicians. The areas contributing to the prediction were mostly in the frontal, parietal, and
occipital lobes of the left hemisphere. Our results suggest that decoding musicianship from magnetic reso-
nance images of brain structure is feasible. Further, the distribution of the areas that were informative in the
classification, which mostly, but not entirely, overlapped with earlier findings on areas relevant for musical
skills, implies that decoding-based analyses of structural properties of the brain can reveal novel aspects of
musical aptitude. In particular, our results highlight differences in visual areas in addition to the already
more established differences located in motor networks and networks of higher-order cognitive function.

Keywords: Decoding, Learning, Magnetic resonance imaging, Machine learning, Musician, Support vector
machines

1. Introduction

The gross structural properties of the brain are shaped during peri- and postnatal development, and ge-
netic guidance continues to influence brain formation throughout infancy and childhood (see e.g. Pletikos et
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al., 2014). Especially during postnatal development, structural changes reflect interactions between genetic
and environmental factors. However, also learning affects brain structure, and the role of the environment
and individual’s own actions in influencing gray- and white-matter properties are likely to be particularly
strong during development. Training-related structural changes have been observed to occur throughout the
human lifespan in both the gray and white matter (Maguire et al, 2006; Scholz et al. 2009; Zatorre et al.
2012; Sampaio-Baptista et al. 2014). Clear evidence of the influence of sensory environment can be seen
for example in the auditory cortices of bilingual children: more variable language and auditory environment
increases the volume of the Heschl’s gyri (Ressel et al. 2010). Similarly, learning a second language in-
creases the gray matter density of the left inferior parietal cortex in both adolescents and adults (Mechelli et
al, 2004). Taken together, a magnetic resonance image (MRI) of a person’s brain should contain information
about individual abilities, especially for well-trained skills that are acquired early in life.

Hence, does possessing a skill manifest as a detectable trace in the structural MRI of a person’s brain?
The answer is likely to depend on at least the magnitude and type of the structural changes associated
with the acquisition of a specific skill. Since playing music requires mastering of a complex set of motor
and multi-sensory skills, the learning-related structural changes could be expected to be highly distributed
across the cortex. Indeed, there is now a large body of evidence showing functional and structural differences
between musicians’ and non-musicians’ brains (Elbert et al., 1995; Münte et al., 2002; Gaser & Schlaug,
2003a,b; Wong et al., 2007; Bermudez et al. 2009; Barrett et al. 2013; Miendlarzewska et al. 2013;
Moore et al. 2014; Reybrouck & Brattico, 2015). Musicians are therefore an ideal population for testing
whether the structural information obtained with MRI would allow decoding of acquired expertise, since
adult professional musicians have typically started the intensive training at an early age, and it is easy to find
control participants with little or no musical training.

In previous neuroscience research, machine learning has been more widely applied to functional but
not so much to structural neuroimaging data. For example, studies conducted with functional magnetic
resonance imaging (fMRI) have succeeded in reliably decoding reward-based decision-making processes
(Hampton & O’Doherty, 2007), visual experiences and visual imagery during sleep (Nishimoto et al. 2011;
Horikawa et al. 2013), moral judgments (Koster-Hale et al. 2013), and unconscious or covert mental states
(Haynes & Rees, 2006). Experiments using other brain imaging modalities, namely electroencephalography
(EEG) and magnetoencephalography (MEG), have demonstrated that decoding hand movement directions
(Waldert et al. 2008), semantic categories of words (Cichy et al. 2014) and aware vs. unaware visual
percepts (Salti et al. 2015) is possible, to name a few examples. In the specific domain of music-related
expertise, it has been previously possible to decode individuals’ musicianship classes from fMRI data that
was recorded while the participants were listening to different pieces of music (Saari et al., 2018). While
these and other functional imaging techniques allow inferring and contrasting brain states, traits are perhaps
better quantified from structural data. Indeed, functional imaging techniques only capture processes elicited
by the performed task.

There are many clinical applications based on data-driven classification of structural MRIs , such as
diagnosis of Alzheimer’s disease (Moradi et al. 2015), or identification of individuals at risk for bipolar
disorder (Hajek et al. 2015). However, relatively few investigations on the feasibility of using machine
learning techniques for classification of non-clinical MRI features have been reported to date. Given that
brain structure reflects a multitude of influences and processes, and which must be relatively highly pre-
served to allow normal function, such tasks are inherently difficult. In this study, we show for the first time
that it is possible to decode musicianship from the brain structure: to predict whether a person is a musician
or a non-musician by analyzing cerebral cortical thickness data with support vector machines (SVM), which
is a supervised machine-learning technique for binary classification problems (Cortes & Vapnik, 1995).

A difficult problem in structural MRI studies is identifying which findings are at the same time statisti-
cally and neurobiologically significant for a given cognitive function or behavioral skill. In principle, a small
difference in one region can be much more relevant for a given cognitive function than a larger difference in
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another region: behaviorally (psychologically, clinically) meaningful variation is embedded within variation
due to other causes across individuals. It is possible to address causal questions by disrupting brain activity
for example by using transcranial magnetic stimulation, but the relative stability of brain structure renders
any interventional approaches impossible in humans. Hence, how should one decide whether a statistically
significant difference in cortical thickness, reported in millimeters, is meaningful in behavioral terms?

In this regard, machine-learning or decoding models may be useful: if a set of measurements systemati-
cally predicts the desired target value, one can conclude that the measurements contain information about the
property of interest, which often has more value than merely reporting group differences. In this study, we
attempt to decode musicianship by classifying the participants as either professional performing musicians
or non-musician control participants based on their MRIs. While structural differences between musicians’
and non-musicians’ brains have been investigated for decades, it has remained unknown which cortical
structures best allow decoding musicianship. By using reliable and extensively validated machine-learning
and MRI processing methods, we address this issue in this study.

2. Materials and methods

2.1. Participants

A total of 121 professional, amateur, and non-musician participants were recruited to this study. Six
participants were excluded from the data analysis due to neurological or psychiatric disorders. The recruited
group of professionals consisted of rock, pop, jazz, and classical musicians who had started playing their
first instrument before the age of thirteen. The non-musician and amateur musician groups were merged for
the binary classification task. The final participant demographics are summarized to Table I. The study was
part of the “Tunteet” protocol approved by the Coordinating ethics committee of the Helsinki and Uusimaa
Hospital District. Written informed consent was obtained from each participant prior to the measurements.
The research was performed in compliance with the Declaration of Helsinki by World Medical Association.

2.2. MRI data acquisition

The MR images were acquired at the Advanced Magnetic Resonance Imaging (AMI) center of Aalto
Neuroimaging, Aalto University (Espoo, Finland). A Siemens Magnetom Skyra 3 T whole-body scanner
(Siemens Healthcare, Erlangen, Germany) with a standard 20-channel head-neck coil was used. A gradient-
echo (MP-RAGE) T1-weighted sequence with repetition time, echo time, inversion time, and flip angle of
2530 ms, 3.3 ms, 1100 ms, and 7 degrees, respectively, was used. Voxel size was set as 1 mm3.

2.3. Extraction of cerebral cortical thickness data

Automated cerebral cortical thickness measurements were performed using the FreeSurfer MRI analysis
software suite (Dale et al. 1999; Fischl et al. 1999), which is available online at https://surfer.nmr.
mgh.harvard.edu/. FreeSurfer has been shown to make accurate and precise volumetric estimates in
several validation studies (Fischl et al. 2002; Han et al. 2006; Wonderlick et al. 2009; Cardinale et al. 2014).
The left and right hemispheres of the cerebral cortex were both parcellated into 74 regions according to the
Destrieux atlas (Destrieux et al. 2010). The average thickness of gray matter at each of the 148 regions was
estimated. The intermediate steps of the automated procedures were manually checked for obvious errors,
and corrected, if needed. The smallest measured cortical thickness was 1.47 mm and the largest 4.14 mm,
suggesting that the data did not contain any major outliers, since the human cerebral cortical thickness is
known to vary approximately between 1.0 and 4.5 mm (Fischl et al. 2000).
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2.4. Control for confounding effects
Cortical thickness decreases with age (Salat et al. 2004; Thambisetty et al. 2010; Toga et al. 2011).

Since the participants in our study spun a wide range of ages, the effect may have consequences for our
study. If, for example, we trained a classifier with young musicians, and tested it with old musicians, the
performance would be probably worse than with age-balanced groups. To test the existence of this effect
in our data, we fitted a regression model using age as the independent variable and mean cortical thickness
as the dependent variable, and examined the coefficient of determination. A successful replication of the
previous studies would imply a need for age-balanced training and test sets. Because previous studies have
also identified structural differences between the brains of males and females (Im et al. 2006; Sowell et al.
2007), we also examined the mean cortical thickness with respect to the participants’ gender.

2.5. Classification and cross-validation
Supervised machine learning is about finding a mapping X → Y where xi ∈ X is a sample and yi ∈ Y

is a group label, when having a limited number of labeled samples (y1, x1), . . . , (yn, xn). Using SVMs
(Cortes and Vapnik, 1995), we studied a two-class problem with yi ∈ {musician,
non-musician} and each sample xi containing the cerebral cortical thickness measurements of the participant
i. The SVM classifier was selected because it is known to perform well in many kinds of classification tasks
(Fernández-Delgado et al. 2014) and its implementation is available in many machine-learning packages.

To use the data as efficiently as possible, we used nested stratified k-fold cross-validation for model
selection and validation (Kohavi, 1995) (Figure 1). We selected to test linear and radial basis function
kernels for the SVM and k = 10 for both the inner and outer cross-validation loops. Since age but not gender
was identified to have an effect on the mean cortical thickness (see Sections 3.1 and 3.2), we balanced
the folds with respect to participant and age groups. The coarse logarithmic grid {1, 10, 100, 1000} was
searched to optimize the SVM C parameter, which controls the generalization ability. Since the participant
groups were imbalanced, the parameter C was adjusted for group j as Cwj where wj is a weight inversely
proportional to the group frequency.

The machine learning pipeline was implemented in Python version 3.2.0 from the Python Software
Foundation. For cross-validation and classification we employed the Scikit-learn module (Pedregosa et al.
2011; Abraham et al. 2014), which internally uses the LIBSVM library (Chang and Lin, 2011) for SVMs.
The cortical surface visualizations were produced with PySurfer, which is available online at https://
pysurfer.github.io/.

2.6. Variable selection and scaling
To identify an informative subset of the most relevant variables for constructing the classifier, we used

a filter-type variable selection procedure as a preprocessing step (Weston et al., 2000; Gyuon & Elisseef,
2003). The Student’s t-test for two independent samples with the critical level α = 0.05 was used to discard
variables for which the null hypothesis of equal means could not be rejected. The variable selection was
repeated on each cross-validation iteration. Therefore, we used the number of times a variable was selected
as an indicator of its relative importance. The selected variables were transformed to standard scores by
removing the mean and scaling to unit variance to avoid variables with large numerical ranges to dominate
the classifier fitting process.

2.7. Evaluation of classifier performance
We used Cohen’s kappa (Landis and Koch, 1977) as the primary metric for evaluating the classifier’s

performance. This metric is zero for chance-level agreement between the actual and predicted participant
groups, +1 for complete agreement, and −1 for complete disagreement. It is calculated as κ = (πo −
πe)/(1−πe) where πo is the observed agreement (percentage of correct predictions) and πe is the probability
of an agreement occurring by chance. The metric can be rewritten as κ = 1 − (1 − πo)/(1 − πe), where
1− πo is the error rate and 1− πe is the probability of a disagreement occurring by chance.
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2.8. Statistical assessment of over-fitting

To investigate the reliability of the classifier, we used the following permutation test. First, the group
labels of the entire data were randomly permuted. The classifier training and testing were then performed
with the expectation of achieving chance-level prediction metrics on average. Next, this process was re-
peated 1000 times and the prediction metrics collected as the null distribution. Finally, the classifier’s
performance was compared to this distribution. If the probability of obtaining equal or better results with
the randomly-permuted group labels was less than the critical level α = 0.05, we considered the classifier
reliable.

3. Results

3.1. Mean cortical thickness as a function of age

The relationship between the participants’ age and mean cerebral cortical thickness appeared to be linear;
see Figure 3 for an illustration. A regression analysis showed that the mean cortical thickness decreased
significantly with age (F1,114 = 39.72, p < 0.001); mean cortical thickness = 2.652 − 0.005 × age; r2 =
0.260. The 95 % confidence interval for the slope was [–0.007, –0.003]. The result was in agreement with
previous studies (Salat et al. 2004; Thambisetty et al. 2010; Toga et al. 2011) and implied a need for
age-balanced cross-validation folds.

3.2. Mean cortical thickness as a function of gender

The mean cerebral cortical thickness was 2.51 mm (standard deviation was 0.90 mm) for the male partic-
ipants and 2.51 mm (0.70 mm) for the female participants. The 95 % confidence intervals of the means were
[2.26, 2.75] and [2.34, 2.68] for males and females respectively. The measurements were approximately
normally distributed in both groups. There was no significant difference between the means according to an
independent two-sample t-test: t(113) = 0.036, p = 0.971. The data are illustrated with box plots in Figure
2. The result implies that the cross-validation folds do not need to be balanced with respect to gender.

3.3. Classifier performance

The linear SVM with nested cross-validation and group-frequency-weighted samples achieved a signif-
icant inter-rater agreement (κ = 0.321, p < 0.001) between the actual and predicted participant groups
which was an imbalanced sample of musicians and control participants. It correctly classified 19 of the
30 (63.3 %) musician and 62 of the 85 (72.9 %) non-musician participants. In the set of 73 participants
classified as non-musicians, 62 (84.9 %) were actually non-musicians. In the set of 42 participants classi-
fied as musicians, 19 (45.2 %) were actually musicians. The confusion matrix of the classification results
is shown in Table II. A radial basis kernel function for the SVM was also tested, but the results were not
analyzed further due to over-fitting, which was assessed using the permutation test described in section 5.8
(p > 0.05).

Post-hoc tests were performed to assess possible causes of participant misclassification. For the de-
mographic data, there was a significant difference in age between the correctly and incorrectly classified
non-musicians (Student’s t-test; p < 0.005) such that incorrectly classified non-musicians were older than
correctly classified non-musicians. For the imaging data, there was a significant difference in mean corti-
cal thickness between the incorrectly and correctly classified non-musicians (Student’s t-test; p < 0.001).
The same effect was observed for musicians (Student’s t-test; p < 0.005). Given that cortical thickness
was smaller in musicians than in non-musicians in the frequently selected regions of the machine learning
pipeline (see section 3.5), and that cortical thickness decreased with age (see section 3.1), this suggests
that sometimes the classifier confused the effects of musical training and aging because cortical thinning is
associated with both of these two processes in these data.
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3.4. Assessment of over-fitting with permutation tests
The classifier training and testing was repeated 1000 times with randomly permuted group labels. The

mean inter-rater agreement was κµ = −0.002 and the standard deviation was 0.124. The 95 % confidence
interval for the mean inter-rater agreement was [−0.010, 0.006]. The permutation distribution was approxi-
mately normally distributed. The probability of observing a Cohen’s kappa equal to or larger than κ = 0.321
by chance was p = 0.006. The permutation test results are illustrated as a histogram in Figure 4. The results
suggest that the actual classifier was reliably fit to the data and not prone to over-fitting, since it did not
perform well with the randomly permuted group labels.

3.5. Variable selection
The variable selection results of the linear SVM are summarized to Table III and illustrated in Figure 5.

The results were fairly stable, meaning that similar decisions were made on each of the ten cross-validation
iterations. There was a total of thirteen regions, nine in the left hemisphere and four in the right hemisphere,
which were selected on every iteration. Five more regions, all located in the left hemisphere, were selected
on more than half of the iterations. In total, 39 different regions were selected during the ten cross-validation
iterations. Because it is difficult to assess the importance or meaning of those regions that were selected
infrequently, we chose to analyze further only those 18 regions that were selected on more than half of the
iterations.

The frequently selected regions were located in the frontal, parietal, and occipital lobes. Since these
feature selection results themselves did not contain information about the direction or magnitude of effects,
we compared the cortical thickness in the frequently selected regions between musicians and non-musicians
as a post-hoc comparison in order to understand the effects of any underlying musical ability better. The
results are presented in Table III. The cortical thickness of every frequently selected region was smaller
in musicians than in non-musicians. To have a reference for the effect sizes in these regions, one can
compare the rate of cortical thinning with aging to the differences observed between musicians and non-
musicians. The rate of cortical thinning was 0.005 mm per year on average in our data (p < 0.001, see
results in Section 3.1). Therefore, the differences between the musicians’ and non-musicians’ brains were
approximately 10–20 times larger than yearly cortical thinning.

4. Discussion

Our results demonstrate that decoding musicianship from brain MRIs is feasible. The linear SVM
achieved a significant inter-rater agreement between the actual and predicted participant groups. In other
words, it was able to learn a function from labeled MRI data that could be used to classify new previously
unseen unlabeled MRI data. It correctly labeled 63.3 % of the musician and 72.9 % of the non-musician
participants.

Since playing music is a combined multi-sensory and motor skill, we expected that the relevant regions
for classifying the participants would be widely distributed across the cortex. Indeed, the classifier’s ability
to distinguish musicians from non-musicians was based on differences in cortical thickness in several regions
located in the frontal, parietal, and occipital lobes with a greater emphasis on the left compared to the right
hemisphere. This is in general agreement with the previous literature, which demonstrates that several areas
in frontal, parietal and occipital lobes are linked to musical ability.

In line with our results, James and colleagues (2012) found a decreased gray matter density in amateur
and professional musicians compared to non-musician participants in the right postcentral gyrus, bilateral
paracentral lobule, bilateral precuneus, left inferior occipital gyrus, and bilateral striatal areas. Our results
are in line with these findings especially for the medial surface regions, however suggesting more empha-
sized role for the left than right hemisphere. In our study, the thickness of the left precuneus and the left
paracentral lobule were observed to be relevant predictors of musical ability. James and colleagues (2012)
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interpreted their findings to reflect automatized sensorimotor function and argued that fewer neurons are
eventually needed for producing the playing-related movements, after a certain level of proficiency has been
acquired, which could explain also our results.

Indeed, increases in proficiency during development are often associated with decreases in gray matter,
and as musical skills are often acquired early in life, it would make sense that the areas that are engaged
in increased amounts of sensorimotor training show stronger expertise-related pruning. The volume of
left precuneus, which is a part of the superior parietal lobule, and left paracentral lobule were observed
as relevant predictors of musical ability both by James and co-authors and the current study, highlighting
the role of these regions in acquired musical aptitude. James and colleagues (2012) found also regions
with increased gray-matter densities but they did not overlap with the regions we observed to be important.
Achieving detailed understanding on the differences between expertise-related decrease vs. increase in gray
matter thickness and volume would require analysis at the level of underlying neuronal and vascular changes.
It may well be, that the skill acquisition during development builds on very different neuroplastic processes
which are integrated with maturational changes, than the skill acquisition later in life (Steele et al., 2012;
Vaquero et al., 2015; de Manzano and Ullén, 2017; Weisberg et al., 2019).

Further, while many studies that investigated skill- and experience-related changes in the human brain
structure report increases in volume, area, or thickness, the large amounts of knowledge, experience, and
skills obtained during a lifetime are ultimately not likely to be represented in the brain by cumulative, con-
tinual increases in structural measures (Wenger et al., 2017; Calmels et al., 2019). Indeed, selection, deletion
and pruning are effective mechanisms that occur throughout the nature, including brain development. The
expansion-renormalization model posits that learning is a two-step process, in which the first step involves
an expansion of gray matter structure, followed by selection and pruning in the second step, thus keeping
the overall brain volume approximately constant (Wenger et al., 2017). Since musical expertise is acquired
over very long time scales, these data could be explained in the context of the expansion–renormalization
model by a gradually accumulated negative net effect, which is either due to over-pruning over time, de-
clined expansion volumes over time, or both. These processes might be modulated by the already acquired
experience or aging.

Gray-matter differences in the frontal lobe between musicians and non-musicians have also been re-
ported in previous experiments. Gaser & Schlaug (2003a) found an increased gray-matter volume in the left
inferior frontal gyrus in musicians. Another study (Bermudez et al. 2009) observed greater cortical thickness
bilaterally in the middle frontal gyrus, and the left superior frontal gyrus. Our results are partially in conflict
with these observations, as we detected greater cortical thickness in the left middle frontal gyrus and sulcus
in non-musicians than musicians. Unfortunately, it is difficult to point out what could be the reason for the
disagreement due to differences in participant recruitment and data analysis methods. While Bermudez and
colleagues performed voxel-level analyses based on the general linear model, we used supervised machine
learning and analyzed the data using a predefined cortical parcellation.

Our findings on the significance of occipital areas for classifying musicians vs. non-musicians may
seem at first contradictory, as playing an instrument is strongly linked with auditory-motor -integration.
There are however also earlier studies showing this association. Luders and colleagues (2004) identified
structural changes in the occipital lobe related to musical ability. They found gray matter asymmetries in
musicians in the cuneus and the medial occipital gyrus. Along the same lines, Bengtsson and co-workers
(2005) showed that practicing playing music during adolescence correlated with fractional anisotropy in
the splenium and body of the corpus callosum extending into the white matter of the occipital lobe. Foster
and Zatorre (2010) found a positive correlation between a relative pitch task and cortical thickness in the
left precuneus, left inferior parietal lobule, bilateral parieto-occipital sulcus, left middle frontal gyrus, left
precentral sulcus, right precentral gyrus, and left ventrolateral frontal cortex. A recent fMRI study also
indicated large increases in brain-scale networks connected to music-selective visual areas (Mongelli et al.,
2017).
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The observed cortical differences between musicians and non-musicians in the occipital lobe could be
related to an audiovisual or visuo-motor integration process, that presumably forms an essential component
in learning to fluently translate visual notes to auditory and motor representations: Interestingly, modulating
attentional demands for auditory stimuli has been shown to activate the peripheral visual cortex not only in
blind subjects but also in normally sighted adults (Cate et al. 2009). The cross-modal sensory interactions
might thus be more readily available for relevant behavioral needs than is typically assumed (Shimojo &
Shams, 2001). Music training might well be one of the skills that readily maintains integration between
auditory, visual, and motor cortices, at the early level of cortical hierarchy. Indeed, previous studies have
found musicians to score better than non-musicians in visual attention tests (Rodrigues et al. 2013), as well
as in audiovisual timing tests where musicians were better in judging whether auditory and visual stimuli
were presented synchronously (Lu et al. 2014). Moreover, an EEG study found that musicians are able to
expect auditory endings based on visually-presented musical sequences (Schön and Besson, 2003).

As with any comparison between groups differing in the level of expertise, it is difficult, if not impos-
sible, to tease apart the influence of expertise and innate differences in brain structural properties. Most of
the previous studies investigating the neural basis of musical expertise have relied on cross-sectional exper-
imental designs. A potential problem shared by such studies, including the present one, is that they are able
to rule out only certain confounding effects. Therefore, it is interesting to compare the results on relevant
cortical areas for musical expertise between cross-sectional and longitudinal or intervention studies. For
example, Hyde and colleagues (2009) studied the effect of fifteen months of musical training in musically
untrained children, compared to control children receiving no training. The children who received the musi-
cal training showed a decrease in the relative volume of the left middle occipital gyrus, which was a relevant
predictor of musical ability in our study, too. These common findings give rather strong evidence of the
importance of this region in acquiring musical aptitude. Interestingly, learning to play a musical instrument
is a task that first relies much on visual feedback for achieving the desired motor function (Groussard et al.
2014). Early sensory areas show also the fastest developmental trajectory. Therefore, it is not surprising that
the region that was found relevant for musical aptitude in both studies was located in the occipital lobe.

Hyde and colleagues (2009) also found increased relative volumes in frontal and temporal lobes but
we did not observe such effects. The disagreement could be related to the participants’ age, since Hyde
and colleagues studied young children whereas we investigated adults. Indeed, the cortical gray matter
shows considerable changes, both increase and decrease, in thickness and volume during protracted period
of development (Toga et al, 2006). These developmental processes continue well into adolescence and even
adulthood for some brain regions, and reflect the combined influence of genetic and environmental factors.
The discrepancy might also stem from the very different duration of received musical training; our musician
participants had practiced their instrument thirteen years on average.

To make the classifier generalize optimally, we investigated the effects of age and gender on the par-
ticipants’ mean cortical thickness. Since an analysis of the entire sample of musicians and non-musicians
before training the classifier would lead to over-fitting, the effects of age and gender were studied without
knowledge of participant groups. The mean cortical thickness decreased with age, which replicated previ-
ously reported results (Salat et al. 2004; Thambisetty et al. 2010; Toga et al. 2011). While some studies
have also reported cortical differences between males’ and females’ brains (Im et al. 2006; Sowell et al.
2007), we did not observe such an effect on the level of the whole cortex. Therefore, the participants’ group
and age – but not gender – were used in balancing the classifier’s cross-validation folds. It should be noted
that since age and the number of years of experience in playing music are naturally correlated in profes-
sional musicians, a limitation in this study is that it is not possible to disentangle all interactions between
development, learning, and aging.

Our feature-selection results indicate that the left-hemispheric regions were more informative than the
right-hemispheric regions for classifying the participants as either musicians or non-musicians; only four
reliable regions got selected from the right hemisphere, and as many as 14 from the left hemisphere (see
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Table III). Thus, future studies could benefit from expanding the feature set by calculating suitable inter-
hemispheric lateralization scores, since differences in hemispheric asymmetry between musicians and non-
musicians have been reported in previous studies (Schneider et al. 2005; Ellis et al. 2013; Burunat et al.
2015). However, this imbalance could be alternatively partially related to sampling; most of our participants
were right-handed.

Remarkably, the temporal regions of the Destrieux atlas were not considered informative by our feature-
selection procedure, which was based on cross-validation and the Student’s t-test. However, this may be
simply due to the relatively large sizes of the Destrieux atlases temporal regions resulting in the loss of
information regarding musical ability.Given the availability of many different cortical parcellations (Fischl
et al., 2004; Fan et al., 2016; Glasser et al., 2016; Gordon et al., 2016; Schaefer et al., 2018) which are based
on different delineation methods and region sizes, alternative choices can be tested in future studies. It is
also possible that cortical area or volume would reflect training-related changes better than cortical thick-
ness, which can be also tested in subsequent studies. Indeed, cortical thickness and area are known to be
influenced by different sets of genetic factors and neuroplastic processes (Panizzon et al., 2009; Raznahan
et al., 2011; Walhovd et al., 2016). In addition, thickness and area also have different developmental trajec-
tories and are generally differentially associated with cognitive abilities (Vuoksimaa et al., 2016; Winkler
et al., 2017). Taking the opposite view, the present results allow speculation on regions that are critical for
identifying professional musicians. It may be that fine-tuned auditory sensory function is not sufficient for
separating musicians from non-musicians. In fact, sensory expertise might be generally much more bal-
anced over different sub-populations than motor expertise. Professional musicians must master fine motor
movements and repertoires and be efficient in integrating visuo-motor functions (and memory) with auditory
perception, which might cause more unique structural patterns that become represented in musicians’ brains.
Thus, the brain networks related to actions performed by musicians might be much more discriminative than
the brain networks related to perception.

On a technical and more general level, it is of importance also to consider the advantages and disadvan-
tages of using a brain-atlas-based analysis approach in the first place. On one hand, a voxel-level analysis
would allow detecting very focal effects. However, as the number of voxels would be orders of magnitude
larger than the number of brain regions in a typical atlas, much more emphasis would be required on han-
dling over-fitting and multiple testing in particular, which in turn would usually imply a need for obtaining
a larger sample of participants. On the other hand, brain atlases allow making neuroanatomical definitions,
communicating findings easily, and facilitate comparisons across studies. Ideally, the regions of a brain at-
las also delineate structures with specific functions, allowing efficient data interpretation. Disadvantages of
using brain atlases have been recently reviewed by Dickie and colleagues (2017) and include, for example,
experimental effects being localized between regions and risk of systematic biases. Finally, it should be
noted that voxel-based analyses typically require the data to be smoothed substantially, which can make the
actual effective resolution close to using a very fine-grained brain atlas. From this perspective, these two
approaches can be fairly similar with particular choices of parameters.

In this study, we chose to decode musicianship from MRIs. Since this was shown to be feasible, as a
next step it would be interesting to decode more specific musical skills. For example, it might be possible
to decode musicians’ main instruments using a multi-class classification method. In such approach, several
one-vs-one or one-vs-many SVMs could be used (Hsu & Lin, 2002). Here, while our sample did include
musicians with different main instruments, the sample size of thirty professional musicians would have
been too small to allow analysis of sub-groups. Another way to make the classification problem more fine-
grained could be to predict a continuous value such as years of practice instead of musicianship. Including
both structural and functional features in such decoding analyses (see e.g. Albouy et al., 2019) would be
particularly interesting, since it would become possible to assess whether particular structural differences
are associated with corresponding functional differences and how such relationships change as a function of
(or type of) accumulated experience.
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Overall, our data are consistent with the previous studies that suggest professional musicians’ brains to
be structurally different compared to non-musicians’ brains. Here we demonstrated that using SVMs, such
differences can be detected from MRIs on the level of individual participants. While the most plausible
explanation is that the observed differences are caused by the decades-lasting intensive musical training,
it is impossible to make a definite statement since the musicians’ brains could be different to begin with;
Merrett and colleagues (2013) have recently reviewed possible confounding variables such as genetics,
personality, and early auditory environment. Similarly, we are not able to rule out transfer effects from other
multi-sensory and motor skills associated with musical ability. In future studies, it should be considered if
behavioral data could be included as covariates (e.g. data from an auditory or motor task in which musicians
could be assumed to perform better). Studies investigating training- or learning-induced structural changes
in the brain have also been criticized for small effect sizes compared to imaging accuracy (Thomas & Baker,
2013). However, it should be acknowledged that not all structural changes are necessarily created equal: for
a given behavioral function small structural differences could sometimes be more relevant than larger ones.
In our study, the relatively large sizes of the analyzed regions emphasize differences in cortical thickness that
occur consistently over the defined regions; very focal changes could become insignificant in the average that
is computed from each region. Further, the novelty in our approach is that in addition to finding which brain
regions are different between musicians and non-musicians, we also obtain an estimate of how important
those regions are for decoding musicianship.

Future studies should explore ways of improving the classification accuracy. The performance of SVMs
could be compared to other available classification methods such as random forests or neural networks.
Different feature selection methods could be also tested. In particular, it would be interesting to contrast
filter and wrapper type methods (Weston et al., 2000). Increasing the sample size or MRI resolution (e.g.
performing imaging at 7 T) could also improve the results.

5. Conclusions

In this study, we have demonstrated that it is feasible to decode musicianship from structural MRIs of
the brain. Using well-known and previously extensively validated machine learning and MRI processing
techniques, we analyzed a fairly large sample of 30 professional musician and 85 non-musician control
participants. We were able to correctly categorize 63.3 % of the musician and 72.9 % of the non-musician
participants based on cerebral cortical thickness. The ability to distinguish the musicians from the non-
musicians was based on the thickness of several regions located mostly in the frontal, parietal, and occipital
lobes of the left hemisphere. While several previous studies have compared structural MRIs of musicians’
and non-musicians’ brains, it has remained unclear how relevant the revealed differences are for musical
aptitude. In addition to simply identifying differences in the brains of musicians and non-musicians, we
could estimate how important they are in predicting a person’s musical ability. Overall, our results suggest
that predicting musicianship from brain structure is a challenging task but solvable to a certain degree.
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Table 1: Participant demographics. Handedness missing for two participants.

Group N Age Gender Handedness Years training
Mean SD Range Male Female Left Right Ambidext. Mean SD

Non-mus 80 28.61 8.15 19–53 35 50 6 78 1 2.15 3.81
Musician 35 27.53 7.19 18–45 16 14 2 28 13.00 7.62
Total 115 51 64 8 106 1

Table 2: SVM classification results. Sample size was N = 115 participants.

Non-musician Musician Total

Non-musician 53.9 % 20 % 73.9 %
Musician 9.6 % 16.5 % 26.1 %
Total 63.5 % 36.5 % 100 %

Table 3: Variable selection results
Region Lobe # Musicians Non-mus Diff

Left hemisphere
Middle frontal gyrus Frontal 10 2.57 2.63 -0.060
Middle frontal sulcus Frontal 8 2.165 2.218 -0.053
Paracentral lobule and sulcus Parietal 10 2.285 2.38 -0.095
Intraparietal sulcus and trans. parietal sulci Parietal 10 2.118 2.2 -0.072
Angular gyrus Parietal 9 2.608 2.679 -0.071
Superior parietal lobule Parietal 7 2.369 2.424 -0.055
Posterior transverse collateral sulcus Occipito-temporal 10 2.003 2.115 -0.112
Cuneus Occipital 10 1.817 1.891 -0.074
Middle occipital gyrus Occipital 10 2.498 2.592 -0.094
Superior occipital gyrus Occipital 10 2.144 2.245 -0.101
Superior occ. sulcus and transv. occ. sulcus Occipital 10 2.033 2.12 -0.087
Anterior occipital sulcus and preoccipital notch Occipital 10 2.188 2.273 -0.085
Middle occipital sulcus and lunatus sulcus Occipital 8 1.974 2.035 -0.061
Parieto-occipital sulcus Occipital 9 2.189 2.262 -0.073
Right hemisphere
Angular gyrus Parietal 10 2.675 2.752 -0.077
Parieto-occipital sulcus Parieto-occipital 10 2.21 2.299 -0.089
Medial occ.-temp. sulcus and lingual sulcus Occipito-temporal 10 2.417 2.485 -0.065
Inferior occipital gyrus and sulcus Occipital 10 2.506 2.613 -0.107
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Figure 1: Nested cross-validation using ten-fold cross-validation as the outer loop. The model was constructed using 9 folds of the
data and tested with the remaining one. The process was repeated 10 times, so that each fold acted as the test data once. The SVM
parameters were selected using a grid search with a second cross-validation loop.
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Figure 2: Mean cerebral cortical thickness (mm) as a function of age (years). Age explained 26 % of variation in the mean cortical
thickness.
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Figure 3: The mean cerebral cortical thickness was equal in males and females.
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Figure 4: The permutation-test results over 1000 iterations. The density estimate shows the distribution of the Cohen’s kappa
statistic when the group labels “musician” and “non-musician” were randomly permuted and the machine learning repeated. The
black vertical bar indicates the actual classifier performance.
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Figure 5: The feature selection results of the linear SVM. The regions that were selected on more than half of the cross-validation
iterations are shown in blue. A lateral view of the left hemisphere; B medial view of the left hemisphere; C dorsal view of the left
hemisphere; D ventral view of the left hemisphere; labels from E to H show the right hemisphere.
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