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Abstract

Dynamic web services are vulnerable to a multitude of intrusions that could be pre-
viously unknown. Server logs contain vast amounts of information about network
traffic, and finding attacks from these logs improves the security of the services. In
this research features are extracted from HTTP query parameters using 2-grams.
We propose a framework that uses dimensionality reduction and clustering to iden-
tify anomalous behavior. The framework detects intrusions from log data gathered
from a real network service. This approach is adaptive, works on the application
layer and reduces the number of log lines that needs to be inspected. Furthermore,
the traffic can be visualized.

Keywords: intrusion detection, anomaly detection, n-grams, diffusion map, data
mining, machine learning

1 Introduction
The goal of this paper is to present an adaptive way to detect security attacks from
network log data. All networks and systems can be vulnerable to different types of
intrusions. Such attacks can exploit e.g. legitimate features, misconfigurations, pro-
gramming mistakes or buffer overflows [1]. This is why intrusion detection systems
are needed. An intrusion detection system gathers data from the network, stores these
data to log files and analyzes them to find malicious or anomalous traffic [2]. Sys-
tems can be vulnerable to previously unknown attacks, commonly known as zero-day
attacks [3]. Because usually these attacks differ from the normal network traffic, they
can be found using anomaly detection [4].

In modern networks clients request and send information using queries. In HTTP
traffic these queries are strings containing arguments and values. It is easy to manip-
ulate such queries to include malicious attacks. These injection attacks try to create
requests that corrupt the server or collect confidential information [5]. Therefore, it is
important to analyze the collected data in log files. Most intrusion detection systems
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analyze TCP packet data. There are not many application layer IDS systems available.
Because the HTTP log data are very different from network packet data, they both need
to be analyzed. Different attacks can be performed on different layers.

An anomaly is a pattern in data that is different from the well defined normal
data [4]. In network data, this usually means an intrusion. There are two main ap-
proaches for detecting intrusions from network data: misuse detection and anomaly
detection [2]. Misuse detection means using predefined attack signatures to detect the
attacks, which is usually accurate but detecting new types of attacks is not possible. In
anomaly detection the goal is to find actions that somehow deviate from normal traf-
fic. This way it is possible to detect previously unknown attacks. However, not all
anomalous traffic is intrusive. This means there might be more false alarms. Different
kinds of machine learning based methods, such as self-organizing maps and support
vector machines, have been used in anomaly detection [6, 7]. Information about other
anomaly detection methods can be found in the literature [2]. Unsupervised anomaly
detection techniques are most usable in this case, because no normal training data are
available [4]. These techniques work without prior knowledge of attack patterns. This
kind of adaptive framework is suitable for a posteriori network log analysis.

This study takes the approach of dimensionality reduction. Because the number
of dimensions of the feature space grows large and sparse when analyzing textual in-
formation, such as log files, this is one of the most feasible techniques. Furthermore,
the sparsity of data suggests about the underlying low dimensional structure. Almost
the same amount of information can be represented with lower number of dimensions.
Diffusion map is a manifold learning method that maps high-dimensional data to a low-
dimensional diffusion space [8]. It provides tools for visualization and clustering [9].
The basic idea behind any manifold learning method is the eigendecomposition of a
similarity matrix. By unfolding the manifold it reveals the underlying structure of the
data that is originally embedded in the high-dimensional space [10]. Diffusion maps
have been applied to various data mining problems. These include vehicle classification
by sound [11], music tonality [12], sensor fusion [13], radio network problem detection
[14, 15] and detection of injection attacks [16]. In addition to the advantage of reduced
number of dimensions, the approach can be used for unsupervised learning [4].

2 Related research
Kruegel and Vigna [17] analyzed the parameter values of HTTP queries. The static
queries with no parameters were removed. The underlying assumption is that attack
patterns differ from normal traffic and that this difference can be expressed quantita-
tively. They used several different analyzing methods, such as attribute length and char-
acter distribution. The learning was based on previous data. The data were not labeled.
The analysis of character distribution is similar to our research, because essentially the
characters are n-grams with the length 1. We use 2-grams for higher detection rates,
but we will also get more dimensions in the data matrices.

Hubballi et al. [18] used layered higher order n-grams for detecting intrusions.
However, this analysis was not done on application layer data, but on the network
packet payloads. Higher order n-grams are n-grams where n > 2. This means that
the method is computationally more expensive, but rare events might be detected more
accurately. The n-grams are organized into bins based on their frequency. The anal-
ysis starts with 1-grams, and it moves to higher n-grams incrementally to get higher
accuracy. In the research the number of distinct and unique n-grams went up almost
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linearly as n increased. Therefore, using higher order n-grams might not be as complex
in practice as it could be theoretically. For example, the theoretical maximum number
for 3-grams in ascii-characters is 2563, which is considerably higher than the case with
2-grams.

Dimensionality reduction has been discussed in the context of anomaly detection
from networks. Ringberg et al. studied the IP packet data and tried to detect anomalies
using principal component analysis. They also identified the main challenges when
using principal component dimensionality reduction approach. The finding about large
anomalies contaminating the subspace is relevant also to our research. However, their
network architecture is more complex than ours [19]. Callegari et al. analyzed similar
packet data [20]. These studies used low-level IP packet datasets that need specific ag-
gregation before they can be processed. Our research concerns the application level log
data, which is text, while the IP packet datasets are numeric. In addition, we compare
the results of principal component analysis and diffusion maps.

Diffusion maps have been applied in the network security context. David explored
the use of diffusion map methods to find injection attacks in hyper-networks. His data
included SQL injection examples that used a similar feature extraction as our research.
The n-gram feature extraction was applied to tokenized SQL [16]. Our research, in
contrast, focuses on the raw textual queries. Furthermore, David and Averbuch used
a localized diffusion folder approach to classify network protocols, among other ex-
amples. Their data contains low-level features such as duration and the number of
bytes [21]. However, our data comes from the application layer of the network, specif-
ically web server logs. These are different from the low-level network features and
contain lots of textual information in the form of queries. Moreover, we use the theo-
retical framework of spectral clustering as the basis of our research.

3 Methodology
Straightforward numerical methods are difficult to apply to textual data such as log
files. Therefore, log data must be transformed into feature space. This mapping of
textual information to numerical matrix enables mathematical analysis of the original
log lines.

However, this leads to a large number of dimensions in the feature space. For
efficient analysis, classification and visualization the number of dimensions must be
reduced. This gives the opportunity to use a multitude of classification algorithms.

The proposed method consists of the following steps:

1. Removing lines that do not contain parameters.

2. Feature extraction from the log line using 2-grams.

3. Dimensionality reduction of the features.

4. Classifying the lines either as normal or attack.

After these steps the log file can be visualized as a figure where the attacks are
more easily seen than from a text file. Furthermore, the suspected attack lines can be
inspected in more depth. This facilitates finding abnormal activities because only these
suspected lines are inspected, instead of thousands in the original log.
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3.1 Feature extraction
The features include 2-grams from HTTP query parameters. The log files are simple
text files where each line represents one query sent from the client to the server. Ex-
tracting the true intention of the query is challenging, and the text needs to be converted
to a more machine-friendly format. The feature extraction essentially means converting
this textual data into numerical matrices.

First let us define an n-gram as a consecutive sequence of n characters [22]. N-
gram is a substring with length of n. For example, the string ababc contains unique
2-grams ab, ba and bc. The 2-gram ab appears twice, thus having frequency of 2. A
list of tokens of text can be represented with a vector consisting of n-gram frequen-
cies [22]. Feature vector describing this string would be xababc = [2, 1, 1]. The only
features extracted are n-gram frequencies. Furthermore, syntactic features of the input
strings might reveal the differences between normal and anomalous behavior. Com-
puted n-grams can extract features that describe these differences. It is assumed that
an anomalous query contains some text in the parameter part that differs from normal
behaviour. This means that it must contain some n-grams that appear rarely in the data.

Here is an example of constructing the feature matrix using the n-gram analysis
process with two words, anomaly and analysis. From these words we get the unique
2-grams an, no, om, ma, al, ly, na, ys, si and is. From this information we can
construct a matrix with the n-gram frequencies.

an no om ma al ly na ys si is
1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1

The feature matrix is constructed in this way, including all the different strings that
appear in the parameter fields on each query. Each log line corresponds to a row in
the matrix. From this we can see that there are 10 unique 2-grams in this example.
The logs are ascii-coded, so they can contain 256 different characters. The theoretical
maximum number for unique 2-grams using ascii-characters is 2562, but in practice
we did not get even near to that number. However, in a very varied and big dataset the
number of dimensions could get very high.

The frequencies are collected to a feature matrix X . These n-gram frequencies are
key-value fields, variable-length by definition. Key strings are ignored and 2-grams
are produced from each parameter value. The count of occurrences of every occurring
2-gram is summed. In practice n-gram tables produced from real life data are very
sparse, containing columns in which there are only zero occurrences. To minimize
the number of columns, the processing is done in two passes, first determining the
number of unique n-grams and then analyzing the frequencies. If a column contains
no variation between entries, that column is not present in the final numeric matrix X .
Therefore, only the columns that actually contain some useful information about the
features are included in the analysis.

With this preprocessing technique it is possible to use n-grams whose value of n is
higher than 2. However, the number of unique n-grams will increase and therefore the
number of dimensions will increase as well.

3.2 Dimensionality reduction
The number of extracted features is so large that dimensionality reduction is performed
using principal component analysis and diffusion map. Diffusion map is a manifold
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learning method that embeds the original high-dimensional space into a low-dimen-
sional diffusion space. Anomaly detection and clustering are easier in this embedded
space [9].

The recorded data describe the behavior of the system. Let this data be X =
{x1, . . . ,xN}, xi ∈ Rn. Here N is the number of samples and n the dimension of the
original data. In practice the data are in a N× n matrix with features as columns and
each sample as rows.

3.2.1 Principal component analysis

Principal component analysis (PCA) tries to extract orthogonal components maximiz-
ing their variance from the data. This simplifies the representation of the information
within the data and also facilitates the analysis of the structure and features in the data.
The principal components are linear combinations of the original features. The first
principal component contains the largest amount of variance. PCA reveals the most
information in terms of variance, but this does not necessarily mean that it separates
different clusters in an optimal way [23, 24, 25].

PCA performs the eigendecomposition on the covariance matrix C of the centered
data matrix Xc. The decomposition C = UΛU∗ gives the eigenvectors in U that map
the points in X to a low-dimensional space. This mapping can be calculated with
XPCA = XU . Another approach is to take the singular value decomposition (SVD) of
the original matrix X . One way to interpret this is as rotation of axes to find the most
important features. The new principal components are in the direction of most variance
in the data and thus represent the most differentiating combination of features [23, 24,
25].

As with many dimensionality reduction methods using eigendecompositions, the
number of selected components becomes a problem. One way to do this is to seek
for the eigengap, i.e. a big change of eigenvalues. This way the eigenvalues reveal the
principal components that cover most of the variance [23, 24, 25].

PCA is a linear method and has difficulties finding nonlinear dependencies between
features. It has initial assumptions that restrict its use for latent variable separation and
nonlinear dimensionality reduction [25].

3.2.2 Diffusion map

At first, an affinity matrix W is constructed. This calculation takes most of the compu-
tation time. The matrix describes the distances between the points. This study uses the
common Gaussian kernel with Euclidean distance measure, as in equation 1 [9, 26].

Wi j = exp
(
−
||xi− x j||2

ε

)
(1)

The affinity neighborhood is defined by ε . Choosing the parameter ε is not trivial.
It should be large enough to cover the local neighborhood but small so that it does not
cover too much of it [11].

The rows of the affinity matrix are normalized using the diagonal matrix D, which
contains the row sums of the matrix W on its diagonal.

Dii =
N

∑
j=1

Wi j (2)
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P expresses normalization that represents the probability of transforming from one
state to another. Now the sum of each row is 1.

P = D−1W (3)

Next we need to obtain the eigenvalues of this transition probability matrix. The
eigenvalues of P are the same with the conjugate matrix in equation 4. The eigenvectors
of P can be derived from P̃ as shown later.

P̃ = D
1
2 PD−

1
2 (4)

If we substitute the P in equation 4 with the one in equation 3, we get the symmetric
probability matrix P̃ in equation 5. It is called the normalized graph Laplacian [27] and
it preserves the eigenvalues [26].

P̃ = D−
1
2 WD−

1
2 (5)

This symmetric matrix is then decomposed with singular value decomposition (SVD).
Because P̃ is a normal matrix, spectral theorem states that such a matrix is decomposed
with SVD: P̃ = UΛU∗. The singular values of this symmetric square matrix equal
to its eigenvalues, which lie on the diagonal of Λ = diag([λ1,λ2, . . . ,λN ]). Matrix
U = [u1,u2, . . . ,uN ] contains in its columns the N eigenvectors uk of P̃. Furthermore,
because P̃ is conjugate with P, these two matrices share their eigenvalues. However, to
calculate the right eigenvectors vk of P, we use equation 6 and get them in the columns
of V = [v1,v2, . . . ,vN ] [26].

V = D−
1
2 U (6)

The coordinates of a data point in the embedded space using eigenvalues in Λ and
eigenvectors in V are in the matrix Ψ in equation 7. The rows correspond to the samples
and the columns to the new embedded coordinates [9].

Ψ = V Λ (7)

Strictly speaking, the eigenvalues should be raised to the power of t. This scale
parameter t tells how many time steps are being considered when moving from data
point to another. Here we have set it t = 1 [9].

With suitable ε the decay of the spectrum is fast. Only d components are needed for
the diffusion map for sufficient accuracy. It should be noted that the first eigenvector
v1 is constant and is left out. Using only the next d components the diffusion map
for original data point xi is presented in equation 8. Here vk(xi) corresponds to the ith
element of kth eigenvector [9].

Ψd : xi→ [λ2v2(xi),λ3v3(xi), . . . ,λd+1vd+1(xi)] (8)

This diffusion map embeds the known point xi to a d-dimensional space. Dimen-
sion of the data are reduced from n to d. If desired, the diffusion map may be scaled
by dividing the coordinates with λ1.
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3.3 Anomaly detection
After obtaining the low-dimensional presentation of the data it is easier to cluster the
samples. Because spectral methods reveal the manifold, this clustering is called spec-
tral clustering. This method reveals the normal and anomalous samples [28]. Alter-
natively, k-means or any other clustering method in the low-dimensional space is also
possible [29]. Another approach is the density-based method [14].

Only the first few low-dimensional coordinates are interesting. They contain most
of the information about the manifold structure. For diffusion map we use only the
dimension corresponding to second eigenvector to determine the anomality of the sam-
ples. At 0, this dimension is divided into two clusters. The cluster with more samples is
considered normal behavior. Conversely, the points in the other cluster are considered
anomalous [30, 31, 28]. The second eigenvector acts as the separating feature for the
two clusters in the low-dimensional space. The second eigenvalue is the solution to the
normalized cut problem, which finds small weights between clusters but strong internal
ties. This spectral clustering has probabilistic interpretation: grouping happens through
similarity of transition probabilities between clusters [30, 32]. For PCA we use the first
principal component in a similar way.

In practice the border between the normal and anomalous behavior might be un-
clear. This is the case especially with unsupervised learning, or when exploring the
data for the first time. The normal cluster is usually very dense, and most of the data
points lie within that cluster. The other points can be interpreted as deviating from the
normal state, and thus anomalous.

4 Case 1: Validation with labeled data

4.1 Data acquisition
The data are acquired from a large real life web service. Let us call this dataset “A”.
This case has been presented in an earlier publication [33]. The log files contain mostly
normal traffic, but they also include anomalities and actual intrusions. The log files are
from several Apache servers and are stored in combined log format. Listing below
provides an example of a single log line. It includes information about the user’s IP
address, time and timezone, the HTTP request including used resource and parameters,
Apache server response code, amount of data sent to the user, the web page that was
requested and used browser software.

127.0.0.1 - - [01/January/2011:00:00:01 +0300]

"GET /resource?parameter1=value1&parameter2=value2 HTTP/1.1"

200 2680 "http://www.address.com/webpage.html"

"Mozilla/5.0 (SymbianOS/9.2;...)"

The access log of a web site contains entries from multiple, distinct URLs. Most
of them point to static requests like images, CSS files, etc. We do not focus on finding
anomalies from those requests because it is not possible to inject code via static requests
unless there are major deficiencies in the HTTP server itself. Instead, we focus on
finding anomalies from dynamic requests because those requests are handled by the
web application, which is run behind the HTTP server.

To reach this goal, the access log entries are grouped by the resource URL. That
is the part between host name and parameters in the HTTP URL scheme. Resources
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containing only HTTP GET requests with no parameters are ignored. Each remaining
resource is converted to a separate numerical matrix. In this matrix, a row represents a
single access log entry, and a column represents an extracted feature.

Feature extraction is done in two passes. In the first pass the number of features is
determined, and in the second pass the resulting matrix is produced. In our study we
extracted the number of occurrences of 2-grams produced from HTTP GET parame-
ters. In the example above, the parameter values form a string value1value2. This
string is then analyzed for 2-gram frequencies. These frequencies are normalized with
logarithm in order to scale them. This ensures that the distances between the samples
are comparable.

4.2 Data analysis
To measure the effectiveness of the method the data are labeled so that classification
accuracy can be measured. However, this labeling is not used for training the diffusion
map. The class labels are not input for the method.

Diffusion map reveals the structure of the data, and all the anomalies are detected.
The n-gram features of the data are mapped to lower dimensions. Figure 1 shows the re-
sulting low-dimensional diffusion space with ε = 100. The normal behavior (N=2999)
lies in the dense area to the upper left corner. Anomalous points (N=1293) are to the
right of 0.

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

2nd eigenvalue

3r
d 

ei
ge

nv
al

ue

Diffusion map. Epsilon = 100

 

 
Normal behavior N=2999
Abnormalities N=1293

Figure 1: Two-dimensional diffusion map of the dataset A.

Figure 2 shows that the eigenvalues converge rapidly with ε = 100. This means
that the first few eigenvalues and eigenvectors cover most of the differences observed
in the data. The first value is 1 and corresponds to the constant eigenvector that is left
out in the analysis. Eigenvalues λ2 = 0.331 and λ3 = 0.065 cover large portions of the
data when compared to the rest that have values below 0.005.
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Figure 2: Eigenvalues of transition matrix with ε = 100 (dataset A).

Classification is tested with different values of ε , which defines the neighborhood
for diffusion map. Accuracy of classification is defined as accuracy = (t p+ tn)/(t p+
f p + f n + tn). Figure 3 shows how the accuracy of classification changes when ε is
changed. Higher values of ε result in better accuracy. Precision of classification is
defined precision = t p/(t p + f p). The precision stays at 1 once any anomalies are
detected, which means that all the anomalies detected are real anomalies regardless of
the accuracy [23, p. 361].

For comparison, principal component analysis (PCA) is performed on the same
normalized feature matrix [23, p. 79]. Results are very similar to the diffusion map
approach, because of the simple structure of the feature matrix. This suggests that
data points are linearly dependent. Furthermore, PCA reaches the same accuracy and
precision as diffusion map. The low-dimensional presentation is also very similar.
Figure 4 shows the first two coordinates of PCA.

5 Case 2: Unknown data

5.1 Data acquisition
After testing the methods with known data, we now analyze data that is totally un-
known. We call this dataset “B”. This is the realistic situation with the web service
that we are trying to analyze. There is no previous information about any attacks or
other anomalies. The goal is to find a small amount of interesting lines that can then
be analyzed more accurately. The number of log lines is so big that it is impossible to
check all the lines manually. This is why anomaly detection is needed.

We start with relatively new dataset that has about 10 million lines. However, the
lines with no parameters in the HTTP queries can be filtered out, because they are
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Figure 4: PCA of dataset A, first two coordinates.
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not a big security risk. This leaves us with 2.5 million lines. These lines are then
divided into different files based on the HTTP request URI. The entire log file cannot
be analyzed at once, because different resources have very different parameters. The
normal parameters for one single URI are usually quite similar, however. It makes
more sense trying to analyze them individually. The number of different resources is
quite high, more than 80 000, but many of the resources include just a few lines. In this
case, it is sufficient to analyze some of the most frequently used resources. In addition
to finding anomalies, this will give us more information about the web service traffic
in general. The traffic can also be visualized.

After preprocessing the number of unique 2-grams in the most used resource URI
was more than 1100. This means that dimensionality reduction is definitely needed, but
the number of dimensions is not close to the theoretical maximum of 2562 2-grams.

The new log file acquired for this case is in a different format than the log file
analyzed in the first case. Some additional information, such as time in UNIX time,
is also included. However, this information is not used in this analysis. The features
extracted are the same as in the previous case. The feature matrix is calculated only
from the parameter values. In this example the string to be analyzed would be value.

1305167880 111.222.111.222 965 633 29112

GET /path/to/resource.png?parameter=value HTTP/1.1

/path/to/resource.png parameter=value

/full/path/to/resource.png 200 + -

image/png,image/*;q=0.8,*/*;q=0.5 GB2312,utf-8;q=0.7,*;q=0.7

gzip,deflate fi-fi,fi;q=0.5 http://example.com Mozilla/5.0

(Windows; U; Windows NT 5.1; fi-FI; rv:1.9.2.15)

Gecko/20110101 Firefox/3.6.15

Feature matrix is constructed and logarithmic scaling applied in the same way as
presented earlier with the dataset A. Even though the number of lines in the log file
is quite high, the preprocessing phase takes only less than 10 minutes. Everything is
written into temporary files to save memory. If more memory is available, the prepro-
cessing could be changed to use it and it would get faster.

5.2 Data analysis
We choose two commonly used resources for analysis from the whole log data B. These
resources are called “B1” and “B2”. We aim to find possible intrusion attempts from
them. Dimensionality reduction is performed with both PCA and diffusion map. The
results are then compared. Choosing ε for diffusion map is done differently than for
dataset A. The sum L = ∑i, j Wi j plotted using logarithmic scale reveals the desirable
linear region for ε [34, 35]. The value is chosen from that range, however, because
even small changes of ε in that area affect the resulting embedding drastically, some
human discretion must be used. Classification is done using spectral clustering.

Dataset B1 turns out to be a simple case where most of the data points are similar.
The few deviations are easy to find from the feature matrix. First B1 is analyzed using
PCA. Figure 5 shows that most of the normal behavior (N=14206) is concentrated
to a very dense cluster. Our classifier assumes the points (N=87) to the right of the
normal cluster to be anomalous. This clustering is feasible because the log lines contain
actual previously unknown intrusions, although not all anomalies are intrusive. The
anomalous points also seem to form clusters. These could indicate different types of
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attacks that happen frequently. This information could be used to further protect the
service in the future.
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Figure 5: PCA of dataset B1.

Dataset B1 is also analyzed with diffusion map. The classification results are simi-
lar to PCA, even though the Figure 6 looks different. The normal behavior (N=14216)
is concentrated leaving the anomalies (N=77) to the right of zero based on the first
coordinate. The most differing anomalies are very far from the normal cluster. Some
anomalies are very close to the normal data points. This means that the border between
anomalous and normal traffic is not very clear. For this reason, 10 intrusion attempts
that PCA detected were not discovered by diffusion map. This explains the difference
in the number of found anomalies. Finding an optimal ε value would improve the
result. However, this is a difficult task because of the unsupervised approach. Even
though the low dimensional picture of PCA does not look as clear as the diffusion map,
the result for PCA is better due to 10 false negatives that diffusion map fails to detect.

Dataset B2 contains more difficult and complex queries. This set is an example
where the low dimensional representation by PCA and diffusion map are clearly differ-
ent. Figure 7 shows the PCA of this dataset. The structure of the dataset is seen from
the figure but the exact location of anomalies is difficult to find. This is because even
the normal query lines include long and dynamically changing strings. The sparse left
side is actually normal traffic, but there seems to be a lot of variation in the normal traf-
fic alone. The anomalies found by diffusion map are situated in the upper right corner
of the PCA representation. Data points do not form a distinct cluster, making anomaly
detection and clustering very difficult with this representation. The used simple spec-
tral clustering clearly does not work in this case. Further clustering with more advanced
algorithms might reveal what types of queries the log file contains. Most variance is
captured by the first principal component. However, two first principal components
do not contain most of the total cumulative variance. Even this kind of visualization

12



−200 0 200 400 600 800 1000 1200 1400
−500

0

500

1000

1500

2000

1st coordinate

2n
d 

co
or

di
na

te

Diffusion map

 

 

Normal behavior N=14216
Abnormalities N=77

Figure 6: Diffusion map of dataset B1, ε = 7.

facilitates the analysis of huge text files (N=21406).
Diffusion map finds anomalies from dataset B2. The first two coordinates capture

almost all of the difference between normal and anomalous queries (Figure 8). In addi-
tion, the clusters are very clearly separated and the normal traffic is easy to distinguish.
This dataset shows a clear difference between PCA and diffusion map results. The
anomalous cluster (N=173) contains the points on the far left and the anomalous points
near the normal cluster. Again, the normal cluster (N=21233) is very dense. The found
anomalies contain 88 real intrusions. The intrusions are related to injecting malicious
SQL queries or scripts into the HTTP query. Some non-intrusive queries are also in-
cluded, but they can be manually screened afterwards. The number of log lines is small
enough so that system administrator can inspect the anomalous lines and easily find the
intrusion attempts. Anomaly detection seems to find attacks from a large and varying
dataset. The anomalous traffic forms two distinct clusters, one of which contains the
intrusions. Diffusion map with a correctly selected ε helps in finding anomalies and
automatically detecting normal cluster. Larger values of ε make the diffusion map be-
have more like PCA. These approachees are more suitable for visual inspection and
multicluster analysis.

6 Conclusion
The goal of this study is to find security attacks from network data. The proposed
anomaly detection scheme could be used for query log analysis in real life situations.
We concentrate on web server log data, which contains text queries that are the focus of
our analysis. In these kinds of practical situations the boundary between normal traffic
and intrusions is not always very clear. However, the relative strangeness of the sample
could indicate how severe an alert is.
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The dimensionality reduction framework adapts to the log data. It assumes that only
few variables are needed to express the interesting information, and finds a coordinate
system that describes the global structure of the data. These coordinates could be used
for further analysis of characteristics of anomalous activities.

The main benefits of this framework include:

• The amount of log lines that needs to be inspected is reduced. This is useful for
system administrators trying to identify intrusions. The number of interesting
log lines is low compared to the total number of lines in the log file.

• The unsupervised nature and adaptiveness of the framework. The proposed
methods adapt to the structure of the data without training or previous knowl-
edge. This makes it suitable for exploration and analysis of data without prior
examples or attack signatures. This means that the framework also detects zero-
day attacks.

• It works on the application layer in the network. The attacks themselves must
in some way target the actual applications running on the computer. These logs
might be more available than pure low-level network packet data.

• Visualization of text log data. It is much easier to analyze the structure of traffic
using visualizations than it is to read raw textual log.

The data in question are rather sparse and the discriminating features are quite ev-
ident from the feature matrix. This is the merit of n-gram feature extraction which
creates a feature space that separates the normal behavior in a good manner. The
features describe the data clearly, and they are easy to process afterwards. Still, an
attacker might take advantage of the features used by the intrusion detection system. If
the n-gram frequencies of the attack query are similar enough to normal behavior, the
currently proposed system could not detect the attacks. Also, if most of the traffic in
a single log file consists of attack queries, they will be considered to be normal. This
might be a problem in rarely used services.

One advantage of the diffusion map methodology is that it has only one metapa-
rameter, ε . There exists estimation methods for finding the optimal value. If for some
reason the threshold sensitivity needs to be changed, ε gives the flexibility to adapt to
the global structure. However, the quality of the results is sensitive to changes of this
parameter. Values that are too small or large give non-desirable results.

The presented anomaly detection framework performs well on real data. Several
actual intrusions are detected. As an unsupervised algorithm this approach is well
suited for finding previously unknown intrusions. This method could be applied to
offline systems, as well as extended to a real-time intrusion detection system.

There are several points in this framework that could benefit from further research.
The feature extraction from the web log is currently done with n-grams. However,
this is only one method for it and other text-focused features might better describe
the dataset. Furthermore, the dimensionality reduction scheme could be developed to
adapt to this kind of data more efficiently, and the quality of the reduction could also be
evaluated. The classification method may be improved or changed altogether to another
algorithm. Finally, automated root cause detection would make the system more usable
in practice.
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