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Model Fooling Threats Against Medical
Imaging∗

Tuomo Sipola(B) , Tero Kokkonen , and Mika Karjalainen

Abstract Automatic medical image diagnosis tools are vulnerable to modern model
fooling technologies. Because medical imaging is a way of determining the health
status of a person, the threats could have grave consequences. These threats are
not only dangerous to the individual but also threaten the patients’ trust in mod-
ern diagnosis methods and in the healthcare sector as a whole. As recent diagnosis
tools are based on artificial intelligence and machine learning, they can be exploited
using attack technologies such as image perturbations, adversarial patches, adversar-
ial images, one-pixel attacks, and training process tampering. These methods take
advantage of the non-robust nature of many machine learning models created to
solve medical imaging classification problems, such as determining the probability
of cancerous cell growth in tissue samples. In this study, we review the current
state of these attacks and discuss their effect on medical imaging. By comparing the
known attack methods and their use against medical imaging, we conclude with an
evaluation of their potential use against medical imaging.
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1 Introduction

The goal of the research is to examine the literature related to potential model
fooling attacks against medical imaging, with digital pathology as the main interest.
In the modern digitalised world, Artificial Intelligence (AI) based solutions are
utilised extensively in everyday life. For example, paper [38] introduces an AI-
based healthcare assistant. Heart functioning is analysed and predicted with neural
networks by using electrocardiogram (ECG) data in the studies [40, 41] and similarly,
electroencephalogram (EEG) data is analysed by AI for detecting brain tumors [33].
Syam and Marapareddy used deep neural networks for network intrusion detection,
heart disease prediction and for skin cancer classification [52].

The usage of sub-disciplines of AI, Machine learning (ML) and Deep Learning
(DL) based solutions is rapidly increasing in the medical imaging for prediction
and decision making by itemizing and labeling disease patterns from image sam-
ples [25]. The large amounts of available information makes the medical domain
very interesting for researchers so that new applications can be developed [45]. The
tremendous development of medical imaging has produced advances in diagnostics
and prediction of diseases [13, 3]. The benefit achieved by the DL in the analysis of
modern medical big data is the capability for algorithmic realisation of the various
associations and capability to combine learned lines or edges of low level to the
higher-level shapes [21].

The vast development of machine learning has produced several modern ex-
amples of applying ML/DL for the medical imaging as computer-aided diagnosis
(CAD) tools. Comprehensive review for ML in medicine is presented by authors of
paper [39]. Hussein et al. studied lung and pancreatic tumor characterization with
DL whereas Lu et al. utilised ensemble learning with data mining for predicting
recurrent ovarian cancer. Among others, during this year, utilisation of ML/DL for
medical image classification and detection is studied for example with brain tumors
in [43, 49, 42] and breast cancer in [11, 44, 37]. It should also be noticed that de-
veloping AI for healthcare is a highly technical subject but in addition with usage
of AI for healthcare there are ethical, legal and social challenges involved such as
‘Data ownership, confidentiality and consent’ or ‘Medical moral and professional
responsibility’ [9].

Modern networked and digitalized cyber domain is an extremely complex entity
that comprises unpredictable phenomena. A classical example of that complexity is
a cyber attack against an electricity company, which may endanger the patient safety
of the hospital. Finland’s cyber security strategy [46] classifies healthcare as an area
vulnerable to cyber security issues and states that these issues will be more important
in the future. As known, there are several cyber attacks executed globally against
healthcare infrastructure, and healthcare infrastructure is seen as valuable target
for cyber attacks or an intrusion. The International Criminal Police Organization
(INTERPOL) states that cyber attacks’ target is shifting towards governments and
critical health infrastructure during the ongoing COVID-19 pandemic [20].

As can be seen, ML/DL applications are widely applied in the medical imaging
and simultaneously, the overall medical cyber domain is realised as a potential
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target for the cyber attacks. In this regard, our study focuses on the model fooling
threats against medical imaging. During this study following threat categories were
identified: (i) adversarial images, (ii) adversarial patches, (iii) one-pixel attacks,
(iv) training process tampering and (v) generating fake data.

We investigated literature related to the possible cybersecurity threat vectors
using using a scoping review method. According to Munn et al. scoping review is
a suitable method for the search for scientific gaps in the research area, or building
the knowledge base or the synthesis of literature to confirm the research results [32].
In this paper, the point of scoping review is to seek support from previous research
for the findings of this research, thus building a stronger knowledge base for the
phenomenon. In the scoping review, we used Google Scholar and IEEE databases.
Searches were performed by using the following search parameters: fooling neural
networks, adversarial attack / adversarial example and medical imaging. Studies in
English related to the medical domain were selected. Furthermore, studies with actual
applications of the attacks were included. In addition, some essential methodology
studies are mentioned.

This article is an extension of a short survey originally presented in the Second
International Scientific Conference “Digital Transformation, Cyber Security and
Resilience” (DIGILIENCE 2020) and published in the special conference issue of
Information & Security: An International Journal [48]. This research is expanded
from the original as follows: we have identified more publications that are essential
related to the topic and presented them in a new manner. In addition, we have re-
structured this paper to better reflect the contents of the identified research literature.

The paper is organised as follows: Fooling neural networks is introduced in sec-
tion 2. The specific categories of attacks are discussed in section 3 and its subsections.
The research is concluded with the found future research topics in section 4.

2 Fooling Deep Neural Networks in Medical Imaging

Deep learning tries to combine simple concepts into a representation of the actual
object. This is conducted by creating an artificial neural network of interconnected
nodes [17]. The complex nature of these networks makes them susceptible to unex-
pected attacks, which force the network to output completely reverse results that are
unlike the expected outcome. A reverse result in medical imaging could be harmful
to the patient.

Adversarial attacks against deep learning image classifiers are plentiful. In a
white-box attack, the attacker knows the internal workings of the classifiers. This is
usually useful when using the neural network gradient as a way of finding adversarial
examples. On the other hand, black-box attacks are performed against a system
that has only its image input and classification result exposed to the attacker. The
attack methods use optimization to find examples that produce the most diverging
classification scores [56]. Computer vision is especially affected by these threats
because deep neural networks are the most prominent method. Akhtar and Mian
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estimate that the Carlini & Wagner [8] and Universal perturbations [30] are the
strongest methods. Both are white-box attacks, so they need the complete knowledge
of the inner workings of the target classifier [2]. Furthermore, Afifi et al. demonstrate
that simple color constancy errors can change the classification of a natural image
[1].

Since many methods use a gradient as the guiding principle for the optimization,
gradient masking and obfuscation could help to defend against these attacks. This
would mislead the attacks or make the attack optimization very difficult to achieve.
Another defence method is the use of robust optimization. Robust classifiers are
less likely to behave in an unexpected manner, such as falling for an adversarial
image. This could be achieved, e.g., with adversarial retraining. The third defence
could be adversarial example detection before the input images are fed to the real
classifier [56, 27]. Tizhoosh and Pantanowitz mention adversarial attacks as one of
the challenges facing digital pathology. They raise the question whether minimal
artifacts could reduce the reliability of neural network classifiers. This might be
caused by the old problem of overfitting in artificial intelligence [54]. Akhtar and
Mian propose three ways of defending against adversarial attacks. Firstly, modified
training during learning or modified input during testing can be used. Secondly, they
suggest modifying deep neural networks and their architecture. Thirdly, for unseen
examples, an external model could be used to act as a network add-on [2]. The point
of intervention and defence against these attacks is also a problem to be solved,
which will probably need regulatory best practices since the problem resembles that
of trying to counteract ever developing hacking attempts [14]. A recent survey by
Apostolidis and Papakostas on adversarial attacks against medical image analysis
discusses the robustness of deep neural networks. It identifies many image modal-
ities that have been attacked: X-ray images, magnetic resonance imaging (MRI),
computer tomography scans (CT), retinal images, histology and skin. In addition to
the modalities, the survey lists attacks, their target models, detection methods and
defences. The authors emphasize the need for robust models in automated medical
imaging [4].

3 Attack Types

Based on the literature introduced in this study, Figure 1 shows the most obvious
attack vectors against medical imaging neural networks. The two proposed attack
vectors are changing the training process to create a faulty AI model and modifying
the input images, so that the classification fails even with a correctly working AI
model.

There are several ways to attack against medical imaging. The main methods
can be categorized as (i) adversarial images, (ii) adversarial patches, (iii) one-pixel
attack, (iv) training process tampering and (v) generating fake data. Table 1 shows
the identified attack methods and their use against medical imaging. The following
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Fig. 1 The most prominent attack vectors described in literature. Tampering with training compro-
mises the automated detection pipeline from the beginning. Modifying input images is perhaps the
easier attack method and compromises the results of automated detection.

subsections discuss each of these methods in more detail, introducing the methods
themselves, and discussing their applications.

Table 1 Adversarial methods against artificial neural networks, and their implementations in the
medical domain. The References column shows general references about the methods, while the
Medical domain column shows applications.

Method References Medical domain

Adversarial images [34], [31], [6], [28], [12], [19] [35], [53], [15], [26]
Adversarial patches [7] [15]
One-pixel attack [51], [50], [24], [55] [36], [47], [23], [22]
Training tampering [18], [57]
Generating fake data [29], [10], [5]

3.1 Adversarial Images

Adversarial images are images that are somehow changed by adding perturbation to
create a misclassified image. As shown by Nguyen et al., it is possible to produce
images that are unrecognizable to humans, but that are classified with 99.99% con-
fidence by deep neural networks. Firstly, their adversarial examples include pictures
that resemble noise generated by an evolutionary algorithm using direct encoding.
Secondly, their other adversarial examples resemble wave patterns and lattices, which
have been created by an evolutionary algorithm using indirect encoding. Their evolu-
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tionary optimization uses the classifying deep neural network as the fitness function,
which makes the approach a black-box method. [34]

Moossavi-Dezfooli et al. present the DeepFool algorithm that finds perturbations
to deceive deep neural networks. They use a gradient descent algorithm to find those
perturbations. The combination of an image and the perturbation is falsely classified
as representing something that it does not. [31] Athalye et al. raise the question that
viewpoint shifts, camera noise, and transformations can make adversarial examples
less effective. They created a 3D-printed turtle that is classified as rifle from images
taken of it in the physical world. The optimization process takes into account the
expectation of transformation, which creates more robust adversarial examples. [6]

Some other examples of adversarial images include those generated using adver-
sarial noise [28], using a generative approach to fool black-box classifiers [12] and
gradient shielding to identify sensitive regions where attacks could be executed [19].

Medical images have been used as targets for these kinds of adversarial images.
Paschali et al. studied neural network performance under extreme inputs such as
noise, outliers, and ambiguous data. They used fast gradient sign, DeepFool and
saliency map attacks to create the adversarial images. They performed the attacks on
skin lesion images and whole brain imaging [35]. Taghanaki et al. used three types
of adversarial attacks: gradient-based, score-based and decision-based. These added
perturbations to X-ray images producing images that look quite natural in some cases
[53]. Finlayson et al. used projected gradient descent to create visually unnoticeable
perturbations against fundoscopy, chest X-ray, and dermoscopy images [15].

Ma et al. created adversarial images in medical imaging domain using unnotice-
able perturbations. They go on to claim that medical images can be more vulnerable
than natural images in this context. Firstly, they suggest that medical images have
larger high attention regions, which draw unnecessary attention from the neural net-
work. Secondly, modern neural networks are designed for natural images, causing
them to overparametrize for medical images. Furthermore, a simple adversarial im-
age detector classifier is sufficient to protect the actual classifier from most of the
attacks. [26].

3.2 Adversarial Patches

Adversarial patches can be applied onto images to output any target class. These
patches can be natural, meaning a cut-and-pasted part of an existing image, or
generated using optimization, resulting in wild-looking but successful patches when
applied. According to Brown et al., even small patches can shift the focus of the
classifier to the patch and change the classification of the scene. Suitable patches are
found with similar optimization as with adversarial images. [7]

There have been examples of adversarial patches used against medical imaging.
Finlayson et al. demonstrated that this method works against fundoscopy, chest X-
ray, and dermoscopy images. Furthermore, they tested natural patches, patches built



Model Fooling Threats Against Medical Imaging 7

on the victim model and patches built on another independent model later used as
attacks against the victim model. [15]

3.3 One-pixel Attacks

One-pixel attack means that the alteration of color values of a single pixel will cause
misclassification. Su et al. have shown that this extremely limited attack is successful
against natural images. They use differential evolution optimization against the black-
box classifier to find successful one-pixel examples [51]. Furthermore, they propose
a variation of the attack with multiple objectives [50]. Gilmer et al. propose that
small perturbations are adversarial against machine learning models because of the
high-dimensional geometry of the data manifold. [16]

Kügler et al. created simple problems about pose estimation of surgical tools in
order to localize areas where one-pixel attacks were lucrative. They discovered that
the vulnerable areas of the image are close to the decision boundary. [24]

Vargas et al. propose propagation maps to illustrate how much the perturbations
affect neural network layers. They discovered that complex neural networks let the
single pixel propagate widely causing it to create unreasonable consequences to the
classification result. Attacks against pixels located near the successful attacks are
also quite effective. [55]

There are not many examples of one-pixel attacks against real medical imaging
data. Paul et al. attacked against the National Lung Screening Trial (NLST) dataset
using a one-pixel attack. They also used fast gradient signed method (FGSM) attack,
which was more successful. They applied an ensemble defence strategy to create
more robust classifiers [36]. The concept of using one-pixel attacks against whole
slide images was explored by Sipola and Kokkonen [47], and implemented by Korpi-
halkola et al. using an existing database of those images [23]. The attack was refined
by optimizing the color so that the adversarial pixels would be less prominent to the
human eye [22].

3.4 Training Process Tampering

A backdoored neural network has been trained with malicious training material
that causes it to react in unexpected ways when given specific input. The act of
infiltrating training data with malicious samples is called poisoning. Yang et al.
used direct gradient method and auto-encoders to generate poisoned data for neural
network training. [57] Gu et al. present this idea of including a hidden backdoor
detector inside the classifier by using crafted training data. They demonstrate this
threat using traffic signs, which causes the classifier to detect a stop sign as a speed
limit sign. [18]
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3.5 Generating Fake Data

Not all applications of adversarial methods are malicious. Generative adversarial
networks can also be used for synthesizing data samples [29]. Another application
is to use generative adversarial methods to inpaint medical images that contain areas
of missing data [5]. Another kind of proof of the power of adversarial images is that
they can fool human experts. Chuquicusma et al. have shown that images produced
by generative adversarial networks can fool radiologists [10]. Even if this is not an
attack against a diagnosis tool, it shows the potential of generating fake data.

4 Conclusion

Machine learning based solutions are successfully used in healthcare, especially in
the medical imaging for prediction and decision making in case of a potential tumor.
Medical imaging and analysis methods are not safe from model fooling attacks. Suit-
able research exploits have been shown to successfully fool neural network models in
this domain. The most prominent methods are (i) adversarial images, (ii) adversarial
patches, (iii) one-pixel attacks, (iv) training process tampering and (v) generating
fake data. The first three (i)–(iii) main types of attacks against medical imaging are
present in the scientific studies included in this review. In addition, generating fake
data (v) for non-exploitative purposes was identified. Although it might seem that
these attacks are quite elaborate, with a suitable target system and with a high value
patient, an attacker could find it worthwhile to use an adversarial attack. Based on the
conducted scoping review, future research could include a comprehensive systematic
literature review of the phenomenon, especially for specific imaging modalities or
attack methods. Further investigation needs to be focused on the deep neural net-
work methods used in medical classifiers. The underlying causes and robustness of
those networks are not yet apparent and the theoretical considerations still remain
unresolved.
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