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ABSTRACT

Sipola, Tuomo
Knowledge Discovery Using Diffusion Maps
Jyväskylä: University of Jyväskylä, 2013, 48 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 185)
ISBN 978-951-39-5539-7 (nid.)
ISBN 978-951-39-5540-3 (PDF)
Finnish summary
Diss.

This work is devoted to the study of knowledge discovery using diffusion maps.
Data manipulation and storage have become increasingly affordable enabling
the discovery of hidden information from massive datasets. With ever grow-
ing databases it is important to find efficient data mining methods. This research
concerns high-dimensional data that contains a high number of measured vari-
ables from the point of view of analysis methods, but also from the human per-
spective. Dimensionality reduction is a process where new features are extracted
from high-dimensional data so that their number is smaller than in the input
data while the information content stays the same. Diffusion map is a dimen-
sionality reduction method suitable for data exhibiting nonlinear behavior. This
research shows that diffusion map data mining technology can be brought to di-
verse application areas, e.g., to clustering and to system health monitoring. Sev-
eral studies concerning these data mining tasks are presented. Firstly, clustering
using diffusion maps is demonstrated with text mining and brain imaging data.
These studies show that the methodology is suitable for discovering knowledge
and finding structure in datasets coming from quite different sources. Secondly,
system health monitoring using diffusion maps is presented in network security
and mechanical engineering scenarios. The related studies show that abnormal
behavior in the systems can be found with the proposed methodologies.

Keywords: knowledge discovery, data mining, clustering, anomaly detection,
dimensionality reduction, manifold learning, diffusion maps
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1 INTRODUCTION

Quid sit futurum cras, fuge quaerere, et
quem fors dierum cumque dabit, lucro
adpone [. . . ]

Horace Carm. 1.9

This chapter presents the motivation behind the research concerning knowledge
discovery. The related research objectives are also presented. Next, the struc-
ture of the dissertation and research work are detailed. The articles included in
this dissertation and author’s contributions to them are introduced individually.
Finally, other published articles by the author are mentioned.

1.1 Research motivation

Data manipulation and storage have become increasingly affordable enabling the
discovery of hidden information from massive datasets. Recent advances in these
technologies have enabled new ways to automatically gather huge volumes of
data. In everyday lives mobile phones, home appliances, cars and social media
produce data that contain information about behavior and interactions of hu-
mans. The same massive growth in data gathering and storing is also present
in business and decision making. Industrial equipment, electrical meters and
shipping crates contain advanced sensors that also provide valuable information.
Some of the potential topics where modern data analysis could add value include
healthcare, public sector, retail, manufacturing and personal location data (Lohr,
2012; Sagiroglu and Sinanc, 2013; Myllymäki et al., 2011).

With ever growing databases new businesses have begun to find the power
of data analysis, because in the modern world new data are produced at an in-
creasing speed. Companies such as Amazon, Facebook, Google, Netflix and Ya-
hoo have embraced the new age of big data and use analytics to convert the col-
lected data into economic value (Myllymäki et al., 2011). The amount of scientific
data alone grows exponentially and requires special measures from the analy-
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FIGURE 1 The main goal is to create value by discovering knowledge from existing
data sources.

sis point of view (Szalay and Gray, 2006). Moreover, nowadays businesses and
people working in general management express interest towards analyzing and
understanding their data (Lohr, 2012; Davenport et al., 2012). Figure 1 outlines
the main goal of creating value by knowledge discovery. Everything that hap-
pens between the data sources and knowledge discovery reporting and business
value creation needs to be studied in order to find the most effective ways to
analyze data.

In the center of all this is the analysis of huge datasets. There are two big
challenges in the analysis. The first one is the big size of datasets, which ex-
cludes the possibility of manual work. The other is the unstructured nature of the
datasets, which might contain numerical, categorical, textual or multimedia data.
The first one can be overcome with the use of advanced data mining methods and
other automation. The latter can be solved during preprocessing by restructuring
the variables and analyzing different data individually, combining the results, or
by converting the data to a unified format (Myllymäki et al., 2011).

The overall process of knowledge discovery in databases (KDD) tries to ex-
tract information in order to solve the business problem (Fayyad et al., 1996a,b;
Brachman and Anand, 1996). The actual computational part of knowledge dis-
covery is done using data mining methods. Data mining, according to Hand et
al. (2001), consists of

– analyzing large data sets,
– finding unsuspected relationships,
– summarizing the data.

Furthermore, their definition calls for results that are understandable and useful.
Some famous data mining technique families include data clustering (Jain, 2010;
Cîmpanu and Ferariu, 2012) and anomaly detection (Chandola et al., 2009). Data
clustering tries to find a structure in the data that separates measurements in a
meaningful manner. Anomaly detection on the other hand tries to find outliers
that do not ressemble the other measurements in the dataset.

This research concerns specifically high-dimensional data. This kind of data
contains an unusually high number of measured variables from the point of view
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analysis methods, but also from the human perspective. The number of mea-
sured variables is high and the mathematical representation of the data has a
high dimension. A huge number of variables describe various systems, such as
health monitoring, network intrusion detection and process control. Many kinds
of variables and quantities can be measured from these systems. As stated above,
the objective is to create meaningful groupings of the measurements and to detect
anomalous behavior of the systems.

High-dimensional datasets pose several problems. They are sparse, because
the data points reside in a much bigger space when the number of dimensions
gets bigger. To accurately describe a function, the number of needed samples
grows exponentially when the number of variables grows. At the same time clas-
sification becomes challenging. This is called the curse of dimesnionality (van der
Maaten et al., 2009). High-dimensional datasets are also difficult to visualize with
traditional methods. To overcome these problems this dissertation studies dimen-
sionality reduction, and specifically the diffusion map methodology.

1.2 Research questions

The objective of the research is to apply the knowledge discovery process and
diffusion map technology to varying real world situations. To achieve this, the
dissertation presents various case studies of knowledge discovery and shows that
diffusion map methodologies are practically usable in such situations.

The main research questions of this study are as follows:

1. Can diffusion map data mining technology be brought to diverse applica-
tion areas?

2. How usable diffusion map is for clustering in practical situations?
3. How usable diffusion map is for system health monitoring?

This research is conducted using the design science approach. The goal is to
construct an artifact and evaluate it (Hevner et al., 2004). The artifact here is
namely the computer program that performs the data mining task. The reports
describing the research are part of the evaluation process.

1.3 Structure of the work

The content of this thesis is focused on two topics. Firstly, the theoretical back-
ground of knowledge discovery and diffusion maps is discussed with some ideas
about implementation. Secondly, the contribution of research articles and case
studies is presented. The latter part also covers the concluding remarks.

Chapter 2 introduces the reader to the knowledge discovery process and its
main steps. Dimensionality reduction is one way to perform the transformation
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step in the knowledge discovery process. History and current state of dimension-
ality reduction is discussed in more detail. Since diffusion map is one dimension-
ality reduction algorithm, this dissertation focuses on it and related algorithms.
The technical aspects of these algorithms are also presented.

Chapter 3 outlines the research contribution of the dissertation. It focuses on
the use of diffusion maps in knowledge discovery frameworks. This chapter also
discusses the benefits for each case presented in the included articles. Theoretical
and practical implications are discussed along with recommendations for further
study. Finally, Chapter 4 briefly concludes the dissertation.

1.4 Author’s contribution to the included articles

Author’s contribution to the included articles lies in the development of the over-
all knowledge discovery framework for each case, and especially in the use of
diffusion map methodology. The relationships between the articles are presented
in Figure 2. The first approach to use diffusion map methodology is to moni-
tor system health. Many of the included articles cover this area. Articles PI; PII;
PIII; PIV present results from network intrusion detection. In addition, article
PVII combines a new kernel update method with diffusion maps in a network
log analysis application case. Article PVI concerns fault detection in an industrial
environment. The second approach is to use the methodology for explorative
data analysis with clustering. Article PV applies diffusion map to text document
mining. Finally, article PVIII applies the diffusion map clustering methodology
to brain imaging. Each article is discussed in more detail below.

In PI the idea of using diffusion maps for network log analysis is used. In
order to detect anomalies from a HTTP log, n-gram feature extraction and diffu-
sion map dimensionality reduction produce a new feature space where spectral
clustering is used to separate the normal network traffic from the anomalous be-
havior. The experimental part consists of analyzing a log file from a real server
from a research parter. The author is responsible for the dimensionality reduction
approach, its implementation, performed the corresponding experimental tasks
and contributed ideas to the general framework and interpretation of the results.

Article PII is direct continuation from PI. It includes more comprehensive
test scenarios and deeper discussion. The article proposes a dimensionality re-
duction framework for anomaly detection in network security context. As ear-
lier, n-gram distribution features are extracted from the HTTP logs. Principal
component analysis and diffusion maps reduce the dimensionality of the data
matrix, and facilitate anomaly detection. Several data sets from real servers il-
lustrate the usefulness of the approach. The article hilights the adaptiveness of
the framework and its use in the application layer of network traffic. Visualiza-
tion possibilities are also presented. The author designed and implemented the
dimensionality reduction and clustering parts of the system, performed the cor-
responding analysis, and contributed to the design of the overall framework and
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FIGURE 2 Common topics and application areas of the included articles.

interpretation of the results.
In PIII the clustering and visualization capabilities of a framework based on

dimensionality reduction are discussed. The experiment uses HTTP logs from
a real server, whose traffic is clustered. The author implemented the normal-
ization and dimensionality reduction via diffusion map parts for the proposed
framework, performed the corresponding parts of the experiment and assisted in
reporting the obtained clustering results.

Article PIV contrasts the proposed rule-based system with signature-based
and anomaly detection systems. The main idea is to use unsupervised learning
using diffusion maps to learn the labeling of the data. This labeling is then used to
learn conjunctive rules. These rules are easy to understand and matching them to
newly arriving data is fast. The author contributed to the idea of using conjunc-
tive rules with diffusion maps, designed parts of the framework, implemented
the diffusion map algorithm and clustering, and implemented and adapted the
rule extraction algorithm with the other author.

In PV the knowledge discovery process is applied to research literature. The
proposed methodology is an automatic way of identifying the structure and top-
ics of current research literature. The data in question, i.e. article titles and key-
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words, were collected from publicly available sources. The metadata was then
analyzed using diffusion map dimensionality reduction and clustering. As a
result, the article presents a snapshot of current topics in data mining research
articles. The author contributed to web scraping, data mining design and imple-
mentation, data analysis, result presentation and interpretation.

In report PVI the constructed framework detects gear faults and monitors
system health. The diffusion map training is combined with the Nyström ex-
tension for out-of-sample data. The constructed framework was used to detect
faults in advance, and in some cases earlier than traditional manual monitoring
would have. The author carried out the research under the supervision of the
co-authors. The author’s contribution covers the implementation of the system,
finding a sufficiently accurate prediction model, and in addition reporting and
evaluating the results.

Article PVII combines recursive power iterations algorithm with diffusion
maps. This way the diffusion map model can be updated within a short amount
of time in an online scenario. The sliding window technique creates a diffusion
map that continuously updates itself with new data while dropping old data. The
update algorithm solves low-dimensional coordinates when the distance matrix
is perturbed. The author’s contribution includes the initial idea of combining the
methods, implementation of the system and carrying out the experiments.

In PVIII the methodology is applied to brain imaging data. The data comes
from measurements where people listen to music while their brains are measured
using functional magnetic resonance imaging. Spatial maps, i.e. represenstations
of the brain, are clustered into two groups using diffusion maps. The author
created the clustering framework and carried out the clustering part of the data
analysis.

1.5 Other published articles

In addition to the included articles, the author has also researched other areas of
nonlinear data anlysis. The results have been published in the following articles:

– Cong, F., Sipola, T., Huttunen-Scott, T., Xu, X., Ristaniemi, T. & Lyytinen,
H. 2009.Hilbert-Huang versus Morlet wavelet transformation on mismatch
negativity of children in uninterrupted sound paradigm. Nonlinear Biomed-
ical Physics 3 (1).

– Cong, F., Sipola, T., Xu, X., Huttunen-Scott, T., Lyytinen, H. & Ristaniemi,
T. 2010. Concatenated trial based Hilbert-Huang transformation on event-
related potentials. In Proc. International Joint Conference on Neural Net-
works 2010 (IEEE World Congress on Computational Intelligence), 1379–
1383.



2 THEORETICAL FOUNDATION

Interea repetunt caecis obscura latebris
verba datae sortis secum, inter seque volutant.

Ovid Met. 1, 388–389

In this chapter the knowledge discovery process and data mining topics are dis-
cussed in more detail. The history of dimensionality reduction is presented and
a mathematical explanation of the diffusion map algorithm is given. Supporting
algorithms like Nyström extension are also explained.

2.1 Knowledge discovery process

Knowledge discovery is a high-level term for the whole process of deriving ac-
tionable knowledge from databases. Presenting data mining as a part of the
knowledge discovery process places the technical challenges in the broader scope.
The knowledge discovery process from databases (KDD) suggests the steps that
are needed to extract business knowledge from available data (Fayyad et al.,
1996a,b,c; Brachman and Anand, 1996).

This view is echoed in literature, for example in Abbass et al. (2002, pp. 72,
162). The main diffrerences between the process models are in the bundling of
tasks to higher level steps. However, Pechenizkiy et al. (2008) argue that in prac-
tice different frameworks need to be combined. Cios et al. (2007) cite Fayyad and
call the process academic. They also present a more industry-oriented process
and compare many others. Larose (2006, ch. 7) also refers to an industrial frame-
work where the actual data preparation and modeling phases are just part of the
whole process. Hand et al. (2001) focus on the data mining part of their process
but present a high-level pipeline. Han et al. (2011) also follow a similar data min-
ing process, having databases in mind, as well as Mitra and Acharya (2003, p. 5).
Kantardzic (2011) introduces a technical process. The main stages of some of the
processes are presented in Table 1.
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TABLE 1 Data mining processes (Fayyad et al., 1996a; Hand et al., 2001; Cios et al., 2007;
Han et al., 2011).

Fayyad et al. 1996 Hand et al. 2001 Cios et al. 2007 Han et al. 2011
learn domain business understanding

create target data select target data data understanding data cleaning
cleaning and preprocessing preprocess data integration

data selection
reduction and projection transform data preparation transformation

choose function
choose algotithms

data mining data mining modeling data mining
interpretation interpretation evaluation evaluation

using information deployment presentation

FIGURE 3 Steps of the knowledge discovery process according to Fayyad et al. (1996a).

This research takes the more academic view, focusing on the data mining
part. The process includes five steps that are shown in Figure 3. Below is an
overview of them (Fayyad et al., 1996a).

Data selection In the data selection step the most relevant data sources for the
task are selected. Usually there is an abundance of data sources and sometimes
features, and a substantial challenge is to narrow down the sources that might
contain important information. This is dependent on the goal of the knowledge
discovery task.

Preprocessing Once the target data is defined, it needs to be preprocessed. Be-
sides preprocessing, data cleaning is also a relevant. Converting and collecting
the data to correct formats takes effort. Noise removal is a typical preprocess-
ing step. Incomplete data entries and known large changes need to be accounted
for. Combining and cleaning various databases is a rather mechanical process
but sometimes poses problematic situations. The amount of work needed at this
stage is usually underestimated in practical work.

Transformation Preprocessed data is transformed to a more suitable form for
clustering and classification. This involves feature extraction and selection, di-
mensionality reduction and other transformations. The selected features depend
on the data mining case, as does the number of needed final features.
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FIGURE 4 Machine learning: training creates a model, while testing classifies new data
using the model.

Data mining The data mining step itself tries to extract patterns from the trans-
formed data. Summarization, classification, regression and clustering are some
common tasks at this stage. The goal of the knowledge discovery process is
matched with the relevant data mining methods. Often, this includes exploratory
analysis of the data, which helps in deciding the most suitable models and pa-
rameters for the methods. The end products of this stage are rules, decision trees,
regressions and clustering of the data.

Interpretation Finally, the business value of the results should be understood.
In this step, interpretating the patterns creates the actual final result of the knowl-
edge discovery process. Evaluation of the obtained results is also important be-
cause some assumptions might have been wrong, the data might have been in-
sufficient or there might have been some problem during the previous steps. Not
all results have business significance even if they present some new information
that has scientific or statistic novelty.

This research focuses on the transformation and data mining steps of the
knowledge discovery process. The other steps are intimately connected to the
utilized data, but the data mining methods are usually separate modules that can
be described as independent systems. This is not to say, however, that in all cases
the selection of data mining method is independent of the data and knowledge
discovery problem. Correct tools should be used with differing datasets.

The actual data mining step usually uses a machine learning method. A
supervised machine learning system is first trained using known data labeling
(hence supervision), and then the performance of the system is tested. The testing
results reveal the quality of the learned model, provided that the testing material
adequately reflects the data in a real situation. This idea of training and testing is
illustrated in Figure 4.
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2.2 Data mining

Data mining has a very broad definition encompassing vast areas of research.
One definition for data mining is being “the science of extracting useful informa-
tion from large data sets of databases” (Hand et al., 2001, p. i). Witten et al. (2011,
p. 4) also define data mining: “Data mining is about solving problems by analyz-
ing data already present in databases.” They emphasize the view that data min-
ing has a lot to do with the recent availability of huge databases. In general, the
goal is to explain the data and make predictions based on it by finding and and
describing patterns in it (Witten et al., 2011; Chakrabarti and Cox, 2008). More-
over, data mining tries to find hidden predictive information (Wang, 2003, p. vii)
and make sense of large amounts of mostly unsupervised data in some domain
with a data driven, and not model driven, approach (Cios et al., 2007, p. 3). The
challenge usually lies in finding a model for unsupervised data without a priori
knowledge (Cios et al., 2007, pp. 5–7).

Generally, according to one view, data mining can be exploratory analysis,
descriptive modeling, predictive modeling, discovering patterns and rules or re-
trieval by content (Padhy et al., 2012). The data mining algortihms can be seen as
having three components (Fayyad et al., 1996b):

– The model, where its function (end product) and representational form (tech-
nical side) are relevant.

– The preference criterion on which model to select over another.
– The search algorithm to find models and parameters for the data.

Furthermore, the more common models include classification, regression, clus-
tering, rule generation, summarization, dependency modeling, link analysis and
sequence analysis (Fayyad et al., 1996b; Mitra and Acharya, 2003).

Feature selection takes a subset of features for further analysis at the begin-
ning of the data mining pipeline. Feature subset generation can be divided to
three strategies: complete search finds optimal features, sequential search adds
or removes features and thus gives up the whole search, and random search tries
to be efficient while avoiding local optima. There are various strategies to eval-
uate subsets: distance measure, information measure, dependency measure and
consistency measure. In addition, a wrapper-type evaluation uses predictive ac-
curacy or cluster goodness (Guyon and Elisseeff, 2003; Liu and Yu, 2005).

Clustering algorithms divide the data into groups whose members are simi-
lar in some sense but dissimilar between the groups. The main categories of clus-
tering algorithms could be thougt as hierarchical and partitional (Jain et al., 1999;
Berkhin, 2006; Jain, 2010). More detailed categories of clustering algorithms in-
clude hierarchical, partitional (including k-means, graph), neural network, kernel
(including support vector machines, SVM) and sequential. New challenges are
met with large-scale datasets, visualization possibilities and validity of the clus-
tering (Xu and Wunsch, 2009). A recent categorization of clustering algrotihms is
provided below (Cîmpanu and Ferariu, 2012):
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– Distance based clustering analyzes dissimilarity of data points using dis-
tance metrics. Such methods include, e.g., k-means, PAM and CLARA.

– Density based clustering creates clusters around dense areas and leaves the
other points outside. An example is the DBSCAN algorithm.

– Model based algorithms try to find a model by which the clustering was
generated. Examples include BIRCH and SOM.

– Grid based methods divide the feature space to grid-cells.

Classification tries to place newly arriving data points to some of the known cate-
gories. There are numerous algorithms dedicated to this problem, many from the
early years of computing, inclusing logistic regression (Hastie et al., 2001; Duda
et al., 2012), Bayesian methods (Williams and Barber, 1998; Cheng and Greiner,
1999), kernel methods, decision trees, rule learning, neural networks, support
vector machines and nearest neighbor methods (Hastie et al., 2001; Duda et al.,
2012).

Support vector machines (SVM) are a type of supervised learning algorithm
that performs linear classification of new data points by dividing the feature
space with a hyperplane. Kernel constructions may be used to create nonlinear
classification (Steinwart and Christmann, 2008; Ben-Hur and Weston, 2010).

Neural networks are also a big area of machine learning research. There
are various neural network architectures that connect the artificial neurons. The
number of inputs depends on the data, while the output depends what kind of
labeling is needed (Lu et al., 1996; Anthony and Bartlett, 2009). As an example of
the versatility of neural networks, self-organizing maps (SOM) are designed for
unsupervised dimensionality reduction and clustering (Kohonen, 2001).

2.3 Dimensionality reduction

Dimensionality reduction is a process where new features are extracted from the
data so that their number is smaller than in the input data while the information
content of the data stays the same. This is achieved with a function that finds
new coordinates for the data points in a lower-dimensional space. This process is
called mapping. Many dimensionality reduction methods are manifold learning
or spectral embedding algorithms that are based on the eigen-decomposition of
a similarity matrix (Bengio et al., 2006). A simple example of mapping is an or-
dinary navigation map where the surface of a 3D object is put on a 2D page, as
in Figure 5. Following the same idea, this can be translated to high-dimensional
datasets, as in Figure 6, where more than three dimensions are projected to a
two-dimensional space.

Perhaps the most famous dimensionality reduction method is the principal
component analysis (PCA) (Jolliffe, 2002; Abdi and Williams, 2010). It finds the
eigenvectors of the covariance matrix. These eigenvectors are then used to map
the data points to a space where the axis directions contain maximal variance.
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3D 2D

FIGURE 5 Mapping a 3D object, such as the Earth, to a 2D map.

FIGURE 6 When considering high-dimensional data, e.g. 30 dimensions, the goal is to
reduce the presentation of the information to only a few dimensions.

PCA is a linear method but useful in most practical cases or for initial global di-
mensionality reduction. Another variant is the minor component analysis (MCA)
which considers the eigenvectors that explain the least amount of variance of the
covariance matrix (Luo et al., 1997; Cirrincione et al., 2002).

Kernel PCA adds a kernel function that transforms the data before doing
component analysis (Mika et al., 1998; Müller et al., 2001). This adds nonlinear
capabilities to the PCA analysis. Kernel functions can be useful in separating
clusters that have nonlinear boundaries. When used with isotropic kernels, ker-
nel PCA is a form of metric multidimensional scaling (Williams, 2002). Kernel
PCA and spectral embedding methods are special cases of a more general learn-
ing problem (Bengio et al., 2004).

Multidimensional scaling (MDS) tries to find coordinates by minimizing the
difference between the distance in the high dimensional data point distances and
the low-dimensional point distances. Classically the low-dimensional distances
are measured using the Euclidean norm. The optimization problem has analytical
solutions for some cases but at other times numerical solvers are used. Lately
more generalized versions of MDS have been found (Kruskal, 1964; Borg, 2005;
Bronstein et al., 2006).

Isomap uses the foundation laid by MDS but incorporates the geodesic dis-
tance to the optimization. After finding the neighborhoods for the data points,
Isomap finds the geodesic distances, and finally applies MDS to find the low-
dimensional coordinates (Tenenbaum et al., 2000; Yang, 2002; Saxena et al., 2004;
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Choi and Choi, 2007). Locally linear embedding (LLE) starts from the assumption
that enough densely sampled data lie on a locally linear patch of a manifold. First,
it finds the local neighbors. Secondly, it reconstructs the neighborhood with linear
weights. Finally, LLE minimizes the embedding cost function yielding the low-
dimensional coordinates (Roweis and Saul, 2000; de Ridder et al., 2003; Donoho
and Grimes, 2003; Chang and Yeung, 2006). Laplacian eigenmaps work in a simi-
lar manner. After finding the neighbors and applying a possibly nonlinear kernel
to the connected neighbors, the last step involves using the Laplacian to solve
the eigenvectors (Belkin and Niyogi, 2001, 2003; Belkin et al., 2006; Belkin and
Niyogi, 2007).

Spectral clustering (Kannan et al., 2004; von Luxburg, 2007; Filippone et
al., 2008) is closely related to the other spectral embedding algorithms. It uses
the Laplacian of the similarity matrix graph when calculating the eigenvectors
that are used as low-dimensional coordinates. Starting from the previously men-
tioned methods, theory has been developed around different ways of creating the
distance matrices and finding the cost function for the optimization. The eigen-
vectors act as the separating feature for the clusters in the low-dimensional space.
The eigenvalues are the solutions to the normalized cut problem, which finds
small weights between clusters but strong internal ties. This spectral clustering
has probabilistic interpretation: grouping happens through similarity of transi-
tion probabilities between clusters (Meila and Shi, 2001; Shi and Malik, 2000).
The normalized Laplacian spectral clustering seems to be the better choice over
unnormalized (von Luxburg et al., 2005) and converge under general conditions
(von Luxburg et al., 2008). Further developments in spectral clustering have been
made, for example non-redundant views (Niu et al., 2010; Kumar and Iii, 2011)
and subspace clustering, where an optimized sparse presentation is used as a
basis for the similarity matrix in spectral clustering (Elhamifar and Vidal, 2009,
2013; Soltanolkotabi et al., 2013).

2.4 Diffusion maps in data mining

Diffusion map Ξ is a function from multi-dimensional space to a space with lower
dimensions. It can be placed to the existing taxonomy of dimension reduction
methods (Lee and Verleysen, 2007; van der Maaten et al., 2009) as a nonlinear ge-
ometric method that preserves the diffusion distance global property in the high-
dimensional space as Euclidean distance in the low-dimensional space. Diffusion
map reduces dimensionality from n dimensions to m dimensions:

Ξ : Rn → Rm. (1)

In short, the low-dimensional coordinates of the diffusion map are the eigen-
vectors of a transition matrix between the measurement points. The name diffu-
sion map comes from the fact that the Euclidean distances in the low-dimensional
space preserve the diffusion distances in the high-dimensional space (Coifman et
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al., 2005; Coifman and Lafon, 2006; Lafon et al., 2006; Nadler et al., 2005, 2008).
Diffusion maps are suitable for analysis of gemetry and probability distributions
of empirical data. With correct normalization it is capable of analyzing dynamical
systems that exhibit different time scales (Nadler et al., 2006).

There are broadly two ways to use the diffusion map for data mining:

– Stand-alone diffusion map cluster analysis.
– Supervised learning diffusion map analysis with out-of-sample extension.

If diffusion map is used as a stand-alone data mining tool, the end result is usually
produced only once to explore the data set. Analysis consists usually of clustering
or anomaly detection. Diffusion map has a rigorous justification for k-means clus-
tering (Lafon and Lee, 2006). Moreover, localized diffusion folders create a multi-
level clustering which overcomes the scaling problem of many datasets (David,
2009; David et al., 2010; David and Averbuch, 2012). The implemented system
can be used again for future datasets, but adapting it for high volume streaming
data is challenging. If new results are needed when new data streams in, per-
forming the same analysis successively is an option. Recently diffusion distance
has been defined for changing data and a global distance between graphs has
been established (Coifman and Hirn, 2013).

The supervised learning and extension approach firstly builds a model of
the data and then uses some faster method to extend newly arriving data to the
model. Extension methods are discussed in Section 2.7. Here the end result is a
classification system. This diffusion map methodology for data mining is divided
into two parts. The first part is training, where a model is built upon known be-
havior data of the system. The second part is extending new data to the model.
An unsupervised variant is possible but detecting the correct classes automati-
cally is a huge challenge. The two steps of training and testing are presented
from the mathematical point of view in Figure 7. For an implementation, refer to
Appendix 1. The mathematical details are discussed in Section 2.5.

2.5 Mathematics of diffusion maps

Let each measured data point be a real vector xi ∈ Rn, i = 1 . . . N. This vector
is called also the feature vector. Here N is the number of measurement and n is
the number of measured features. Each element in the vector corresponds to a
measurement from the same sample. For example, the ith measurement would
be:

xi = [xi1 xi2 . . . xin] . (2)

The dataset is created by collecting the measurements to matrix X where
each measurement xi is a row. The columns correspond to the measured features.
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FIGURE 7 Block diagram of diffusion map methodology.

In order to reduce the effect of high dimensions to the sparsity of the data,
we define a kernel function w(xi, xj). It defines an affinity between the two vec-
tors xi and xj. The kernel function satisfies the following properties:

– symmetric w(xi, xj) = w(xj, xi),
– non-negative w(xi, xj) ≥ 0 ∀ xi, xj ∈ X,
– positive semi-definite ∑N

i=1 ∑N
j=1 cicjw(xi, xj) ≥ 0 ∀ xi, xj ∈ X, ci . . . cN ∈ R.

The measurements can be thought as points in a graph whose distances are de-
fined by the kernel.

This kernel defines the weight matrix W, whose entries are Wij = w(xi, xj).
These entries tell the distance between two points. The matrix W is N times N
because distance from each point is calculated to every other point.

The most used kernel is the Gaussian kernel. Any other kernel function
can be used. Measure-based Gausssian correlation kernel replaces the manifold
assumption with the more general measure assumption and combines the local
distances with the distribution of the data. The spectral properties of a diffusion
map utilizing this kind of kernel are similar to the diffusion map (Bermanis et al.,
2013c,b).

Here the Gaussian kernel takes the parameter ε, which defines the neigh-
borhood for the points, the smaller it is, the more it accentuates the differences of
high distances:
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W(xi, xj) = exp

(
−||xi − xj||2

ε

)
. (3)

At this point different families of diffusions may be constructed using renor-
malization wα(xi, xj) = q−α(xi)w(xi, xj)q−α(xj) (where q is the degree of the point)
and applying the weighted graph Laplacian normalization as shown below. Be-
cause the case of α = 0 normalizes graph Laplacian on isotropic weights, the
equation is reduced to identity (Coifman and Lafon, 2006).

Degree of a point expresses how many close connections a data point has in
the graph. The degree of a point is defined as follows:

d(xi) =
∫

X
w(xi, xj)dxj. (4)

In practice in a discrete setting the degree is the sum of the weights between
the data point and the rest of the points:

d(xi) = ∑
xj∈X

w(xi, xj). (5)

To create a normalization matrix, the degrees of each points can be collected
to the diagonal of a matrix Dii = ∑N

j=1 Wij, while the rest of the matrix is filled
with zeros. This means that each row is summed to get the degree of the point
corresponding to that row.

Now the normalized graph Laplacian can be constructed (Chung, 1997).
This corresponds to the transition probability between each data point. In other
words, the probability of travelling from one point to the another. Intuitively the
closer points are more probable travel destinations than points that are far away.
Moreover, the normalized graph Laplacian

p(xi, xj) =
w(xi, xj)

d(xi)
(6)

preserves the eigenvalues (Nadler et al., 2008). Each entry in the weight matrix is
divided by the corresponding row sum. In matrix form this is P = D−1W. This
transition matrix is symmetrized using the conjugate matrix P̃ of P. Each entry in
P̃ can be expressed as:

p̃(xi, xj) = p(xi, xj)

√
d(xi)
d(xj)

. (7)

In matrix form the conjugate matrix is P̃ = D
1
2 PD− 1

2 . This, however, can be
combined with the definition of P: P̃ = D

1
2 D−1WD− 1

2 = D− 1
2 WD− 1

2 . Thus, the
individual elements of P̃ are calculated by

p̃(xi, xj) =
w(xi, xj)√
d(xi)d(xj)

. (8)
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Singular value decomposition (SVD) (Kalman, 1996) P̃ = UΛU∗ finds the
eigenvalues Λ = diag([λ1, λ2, . . . , λn]) and eigenvectors U = [u1, u2, . . . , un] for
the symmetric matrix P̃. This spectral decomposition is expressed as:

p̃(xi, xj) = ∑
l

λlul(xi)ul(xj). (9)

The eigenvalues for P are the same as for P̃. Finally, the left and right eigen-
vectors for P are found with Φ = D

1
2 U and Ψ = D− 1

2 U (Nadler et al., 2008), and
for individual points with

φ(xi) = u(xi)
√

d(xi) ψ(xi) =
u(xi)√

d(xi)
. (10)

Each transition probability is expressed by the sum of products of an eigen-
value and eigenvectors, with the parameter t expressing the number of steps used
to make that transition:

pt(xi, xj) = ∑
l

λt
lψl(xi)φl(xj). (11)

The low-dimensional coordinates Ξ are created using Ξ = ΨΛ. Only a few
of these coordinates are needed to represent the data to a certain degree of error
(Coifman and Lafon, 2006). The data can be reconstructed using Equation 11
while iterating over only the first m eigenpairs. The first eigenvector is constant,
so only the following eigenvectors and eigenvalues are used. This way we get
the following function that maps the data points to a lower-dimensional space:

Ξt
m : xi →

⎛
⎜⎜⎜⎜⎜⎝

λt
1ψ1(xi)

λt
2ψ2(xi)

λt
3ψ3(xi)

...
λt

mψm(xi)

⎞
⎟⎟⎟⎟⎟⎠ . (12)

Now, for each n-dimensional data point xi, there is a corresponding m-
dimensional coordinate, where m � n. The effect of left out dimensions can
be seen in Equation 11. The smaller later eigenvalues cause that part of the sum
go to near zero. The number of selected dimensions depends on how fast the
eigenvalues decay. The first eigenvectors retain most of the information in the
data, which is why the later eigenvectors are left out. Some information is lost
but the error is bounded and lower dimensionality facilitates clustering.

2.6 Choosing parameters

Choosing the parameters, namely ε is not a trivial task. The ε characterizes the
neighborhood of the data points in the Gaussian kernel. This selection is also
called choosing a bandwith. A large ε means that many points will be included
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in the neighborhood, which means that the diffusion distance will be higher be-
cause it is easier to traverse to another data point. Conversely, a small ε causes the
neighborhoods to contain only one point making the graph scarcely connected
and the transition probabilities to be low. A value between the extremes is desir-
able (Schclar et al., 2010). There are many heuristics for estimating this parameter.

The median method takes the middle value of pairwise distances between
the data points (Schclar et al., 2010):

ε = median{‖xi − xj‖}xi,xj∈X. (13)

Average smallest distance in the neighborhood finds a neighborhood size
that includes at least one neighbor for each data point and then takes the average
of such sizes (Lafon, 2004):

ε =
1
N

N

∑
i=1

min
j:xj 	=xi

{‖xi − xj‖2}xi,xj∈X. (14)

The max-min measure tries to tune the kernel to describe the infinitesimal
connectivity of the data. This means choosing the smallest ε while keeping the
local connectivity, with α ≥ 1 assuring that there is at least one point in the neigh-
borhood (Keller et al., 2010; Schclar, 2008):

ε = α max{min{‖xi − xj‖2}}xi,xj∈X. (15)

The theoretical foundations lie in finding the intrinsic dimensionality in
submanifolds of Rn (Hein and Audibert, 2005) and properties of the manifold
Laplacian (Singer, 2006). These findings have lead to the use of the sum of all
weights in the transition distance matrix W (Coifman et al., 2008; Singer et al.,
2009). In Equation 16 the weights in the affinity matrix are summed up. This
sum is larger if the neighborhood is large, and thus there are more distances sig-
nificantly greater than 0. The reverse is true: smaller neighborhood means less
distances and consequently the sum is smaller.

L =
n

∑
i=1

n

∑
j=1

Wi,j (16)

The stability of eigenproblem and neighborhood size with changing ε has
been studied in detail. Echoing some of the above methods the neighborhood
stability approach ensures that the number of local average points is large enough
(Lee and Wasserman, 2010):

ε = min{ε : median{N1, . . . , Nn} ≥ k}, (17)

where Ni = #{xj : ‖xi − xj‖ ≤ √
2ε}. Another way of choosing the bandwidth

is via the eigen-stability analysis using signal-to-noise ratio for some Kn ≥ 1 (Lee
and Wasserman, 2010):

ε0 = inf{ε : SNR(ε) ≥ Kn}. (18)
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A graph-based approach aims for a well-connected graph. The longest edge
of the minimal spanning tree of a fully connected graph would be the ε. How-
ever, this approach yields too large values when there are outliers or several tight
clusters far away from each other (von Luxburg, 2007).

2.7 Extension of new measurements

Once a low-dimensional representation is obtained from the training stage, it
would be beneficial to extend newly arriving data to the model. The goal is to
interpolate the coordinates of unknown points based on the coordinate mapping
of the known points. Many dimensionality reduction methods and spectral clus-
tering can use a general framework for out-of-sample extension (Bengio et al.,
2004). This is the same as the Nyström method that is a popular method to ex-
tend new data (Fowlkes et al., 2004; Belongie et al., 2002). The features selected
during the training are the only ones needed. These new measurements are nor-
malized using the same normalization as during the training.

Let a new data point be yj ∈ Rn. Then the distance between the new points
and each training point are collected in a matrix W̄. This function uses the same
ε as the one in training phase. The new kernel is found by

W̄ij = exp

(
−||xi − yj||2

ε

)
. (19)

Diagonal matrix D̄ii = ∑N
i=1 W̄ij contains the column sums of W̄. Now we

can create the transition probability matrix B = W̄D̄−1. The following matrix
multiplication produces new eigenvectors for the new point, the eigenvectors Ψ
and eigenvalues Λ are the same as in training: Ψ̄ = BTΨΛ−1. These new eigen-
vectors now extend the new point to the diffusion coordinates: Ξ̄ = Ψ̄Λ. The last
two steps can be combined:

Ξ̄ = BTΨ. (20)

Matrix Ξ̄ now contains the extended coordinate approximations in its columns
for the new points yj.

Beyond this straightforward method there are several others. Geometric
harmonics provide a multiscale extension scheme for empirical functions. The
method decomposes the function defined on a manifold into eigenfunctions, then
they are extended using the Nyström method (Lafon, 2004; Coifman et al., 2005;
Coifman and Lafon, 2006). Adaptive kernels combined with Nyström method
offer another alternatives to extension. This density-weighted version uses the
normalized data histogram as coefficients (Zhang and Kwok, 2009). Multiscale
function extension is based on the mutual distances and uses the hierarchical
decomposition of the Gaussian kernel. The data point distribution defines an
adaptive grid on the data (Bermanis et al., 2013a). Generalized out-of-sample ex-
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tension does not depend on the method used in training. The extension method
learns the mapping again and learns the low-dimensional neighborhood of the
new data point. Consequently, it can be used with any manifold learning method
(Strange and Zwiggelaar, 2011). Sparse representation is an alternative to the
more traditional out-of-sample extensions and is shown to work with LLE (Rad-
ucanu and Dornaika, 2013).
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This chapter presents the case studies and their results. First the system health
monitoring in mechanical engineering and network security contexts are dis-
cussed. Then the clustering cases concerning text mining and brain data are men-
tioned.

3.1 Gear fault detection

The goal of PVI is to estimate the usefulness of dimensionality reduction methods
in gear fault detection. The approach has similarities with other recent research
(Huang et al., 2013). The goal of training a model and classifying test samples is
met since almost all the gears are classified correctly according to their labels. This
proves that the training is succesful and separates the good gears from the bad.
More importantly, measurements from totally different gears can be extended
into the model.

The challenges of spectral methods in general need some addressing. The
proposed method works because, after slight filtering, the good and bad gears are
separable in the lower dimensions. However, the high computational cost could
be a problem in a more real-time system (Chandola et al., 2009, p. 38).

The differing physical location of gear units makes it difficult to separate
behaviors. Better training data and more detailed labeling could prevent this
kind of misclassification. Vastly differing operating environments and behaviors
might also cause misclassifications. The classification of a gear time series itself is
an ambiguous concept. However, this study shows that gears in normal condition
and gears that are going to break down behave differently and can be separated
from each other.
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3.2 Network anomalies

Dynamic web services are vulnerable to a multitude of intrusions that could
be previously unknown. Legitimate features can be used for unwanted access
(Mukkamala and Sung, 2003). Server logs contain vast amounts of information
about network traffic, and finding attacks from these logs improves the security
of the services. Intrusion detection systems analyze these logs to identify mali-
cious traffic (di Pietro and Mancini, 2008). Differing traffic can be found using
anomaly detection (Chandola et al., 2009). The next paragraphs summarize the
main techniques used to detect abnormalities from network logs and the main
results with real-world datasets.

The goal of PI is to find security attacks from network data. The proposed
anomaly detection scheme includes n-gram feature extraction (Damashek et al.,
1995), dimensionality reduction and spectral clustering style linear clustering (Shi
and Malik, 2000; Meila and Shi, 2001). It could be used for query log analysis in
real situations. In practice the boundary between normal and anomalous might
not be as clear as in this example. However, the relative strangeness of the sample
could indicate how severe an alert is. The data in question is rather sparse and the
discriminating features are quite evident from the feature matrix. This is the merit
of the n-gram feature extraction which creates a feature space that separates the
normal behavior in a good manner. The features describe the data clearly, and
they are easy to process afterwards. The presented anomaly detection method
performs well on real data. As an unsupervised algorithm this approach is well
suited to finding previously unknown intrusions. This method could be applied
to offline clustering as well as extended to a real-time intrusion detection system.

These results are elaborated in PII. The dimensionality reduction framework
adapts to the log data. It assumes that only few variables are needed to ex-
press the interesting information, and finds a coordinate system that describes the
global structure of the data. These coordinates could be used for further analysis
of characteristics of anomalous activities. The practical results show that abnor-
mal behavior can be found from HTTP logs. The main benefits of this framework
include:

– The amount of log lines that needs to be inspected is reduced. This is use-
ful for system administrators trying to identify intrusions. The number of
interesting log lines is low compared to the total number of lines in the log
file.

– The unsupervised nature and adaptiveness of the framework. The pro-
posed methods adapt to the structure of the data without training or previ-
ous knowledge. This makes it suitable for exploration and analysis of data
without prior examples or attack signatures. This means that the framework
may also detect zero-day attacks.

– It works on the application layer in the network. The attacks themselves
must in some way target the actual applications running on the computer.
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These logs might be more available than pure low-level network packet
data.

– Visualization of text log data. It is much easier to analyze the structure of
traffic using visualizations than it is to read raw textual logs.

The feature extraction from the web log is currently done with n-grams. How-
ever, this is only one method for it and other text-focused features might better
describe the dataset. Furthermore, the dimensionality reduction scheme could
be developed to adapt to this kind of data more efficiently, and the quality of the
reduction could also be evaluated. Finally, automated root cause detection would
make the system more usable in practice.

In PIII a framework for preprocessing, clustering and visualizing web server
log data is presented and used for anomaly detection, visualization and explo-
rative data analysis. The results indicate that there are traffic structures that can
be visualized from HTTP query information. Traffic clustering can give new in-
formation about the users. They could be categorized with more accuracy, and
individual advertising or content could be offered. Using data mining methods,
underlying structure and anomalies are found from HTTP logs and these results
can be visualized and analyzed to find patterns and anomalies.

Article PIV deals with extracting rules from the clustering results provided
by a diffusion map training framework. Modern data mining technology in net-
work security context does not always create understandable results for the end
users. Therefore, this so-called black box system is not a desirable end goal. Sim-
ple conjunctive rules (Craven and Shavlik, 1994; Ryman-Tubb and d’Avila Garcez,
2010) are easier to understand, and rule extraction from the complex data mining
techniques might facilitate user acceptance. The main benefit of this framework
is that the final output is a set of rules. No black box implementation is needed as
the end result is a simple and easy to understand rule matching system. The train-
ing data may contain intrusions and anomalies, provided that the clustering step
can differentiate them. In addition, rule matching is a fast operation compared to
more complex algorithms. The proposed framework is useful in situations where
high-dimensional datasets need to be used as a basis for anomaly detection and
quick classification. Such datasets are common nowadays in research environ-
ments as well as in industry, because collecting data is widespread. Our example
case has been network security, which bears real benefits to anyone using modern
communication networks. The provided tools are useful for network administra-
tors who are trying to understand anomalous behavior in their networks.

In PVII another approach is taken to create a more online system. The train-
ing phase is computationally expensive in machine learning algorithms. Evolv-
ing datasets require updating the training. The proposed method updates the
training profile using the recursive power iterations algorithm (Shmueli et al.,
2012) and a sliding window algorithm for online processing. The algorithms as-
sume that the data is modeled by a kernel method that includes spectral decom-
position. A web server request log where an actual intrusion attack is known
to happen is used to illustrate the online processing. Continuous update of the
kernel prevents the problem of multiple costly trainings.
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3.3 Automated literature mapping

Research in PV follows the knowledge discovery process creating a literature
mapping framework based on article clustering. The goal is to analyze topics
of current interest in a particular field of science. This work has similar goals to
other literature mapping and clustering studies (Szczuka et al., 2012; Leydesdorff
et al., 2013). The proposed framework ressembles the ones that use multidimen-
sional scaling (Boyack et al., 2005; Waltman et al., 2010). The article also presents
case study example in the field of data mining literature. Metadata are collected
from high impact journals. The analysis uses a word occurrence matrix as basis.
Diffusion map with hierarchical agglomerative clustering finds groups of similar
articles from this sparse matrix. The clustering enables a researcher to get a quick
overview of the topics published in the selected body of literature. The results
from this study include frequency tables of the occurring words, structural view
obtained from the clustering and journal article distribution among the clusters.
Currently the output of our method is a snapshot of current published articles.
Combining a longitudinal point of view might reveal long-term trends in research
literature.

3.4 Clustering brain imaging data

Article PVIII presents a nonlinear analysis method for clustering independent
components (ICA) of functional magnetic resonance (fMRI) imaging. In order to
gain understanding about the human brain, various technologies have recently
been introduced, such as functional magnetic resonance imaging (fMRI), which
measures blood oxygenation level. It detects changes that are believed to be re-
lated to neurotransmitter activity. The method localises brain function well, and
thus is useful in detecting differences in subject brain responses (Matthews and
Jezzard, 2004; Huettel et al., 2004). Deeper understanding about the simultane-
ous activities in the brain begins with a decomposition of the data. Independent
component analysis (ICA) has been extensively used to analyze fMRI data. It
tries to decompose the data into multiple components that are mixed in the orig-
inal data (Calhoun et al., 2009). The input data consists of ICA components. The
proposed clustering is based on diffusion map manifold learning, which reduces
the dimensionality of the data and enables clustering algorithms to perform their
task. The two-dimensional clustering derived from the 209,633-dimensional fea-
ture space provides a new tool to compare the components. The results show
that the proposed methodology separates groups of similarly behaving spatial
maps. Results from diffusion map spectral clustering are similar to hierarchical
agglomerative clustering and k-means clustering. Small sample size and good
separation of clusters make the clustering problem easier. Moreover, the visual-
ization obtained from diffusion map offers an interpretation for clustering.
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3.5 Discussion

To characterize the diffusion map method and its motivations, several qualifica-
tions may be used. Below the methodology is placed in the field of dimensional-
ity reduction methods using twelve proposed characteristics (Lee and Verleysen,
2007). This categorization places diffusion maps naturally within the neighbor-
hood of nonlinear PCA-like spectral methods, many of which are discussed in
Section 2.3 of this dissertation.

1. Diffusion maps are categorized as hard dimensionality reduction methods,
meaning that the initial dimensionality is in the magnitude of hundreds or
thousands. The huge number of dimensions is not a problem since the use of
diffusion distances finds the high-dimensional data structure, although too
small sample sizes might not capture the variety of data behavior. Diffusion
maps are also usable with soft dimensionality reduction if a nonlinear ap-
proach is needed. Large sample sizes may actually become a problem since
the distance matrix construction takes computational time and memory.

2. Diffusion maps take the traditional modeling approach using the transi-
tion probability connection between the observed and latent variables. The
method finds the latent variables (i.e. the low-dimensional coordinates) start-
ing from the observed ones.

3. The nonlinearity of diffusion maps has already been stated. The connec-
tion between the latent variables and observed data indeed might be more
complex than just a linear one. This makes diffusion maps capable of recov-
ering more information in certain cases than linear methods. This, however,
comes with a cost in the complexity of the method.

4. The mathematics behind diffusion maps use a continuous model, much like
PCA. As the name suggests, diffusion map is a mapping from the high-
dimensional space to a low-dimensional embedded space.

5. The mapping is implicit in nature. The model unfolds the manifold where
the data resides in the high-dimensional space. There is no direct association
with each data points, but a mapping. Extensions of new data points may
use the same manifold information.

6. When using diffusion maps, external estimation of the dimensionality is
needed. The dimensionality is a metaparameter given by the user. This
embedding dimension is used to select the number of dimensions in the
latent variable coordinates. Using the eigencap in the eigenvalues of dif-
fusion map is a possibility to decide the dimensionality, but since the vari-
ance is not linked to it in the same way as with PCA, this method is not
equivalent. The interesting information might be captured in some other
low-dimensional coordinates.

7. Following the example of PCA, diffusion maps are incremental and pro-
duce layered embeddings. This means that the coordinates do not change if
a dimension is dropped from the resulting low-dimensional space. This is a
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common feature of spectral methods, which are based on eigendecomposi-
tion. The embeddings are not independent because they are not optimized
for the dimensionality.

8. Diffusion maps produce a single coordinate system using the connectivity
of the manifold where the data lies. The global structure of the data and
its overall information content is considered. The local patch approach di-
viding the manifold into pieces has recently been applied in the context of
diffusion maps (Salhov et al., 2012; Wolf and Averbuch, 2013).

9. There is no mandatory vector quantization in diffusion map methods. The
overabundance of data is problem with large kernel sizes, in that case ini-
tial data distribution prototypes created with vector quantization would be
beneficial. In practice, finding the representative samples for larger datasets
is a problem.

10. In Section 2.4 two approaches of diffusion map for data mining are pre-
sented. The clustering version, or batch algorithm works with all the ob-
servations, the dataset being available at once. Diffusion maps alone are
suitable only for such batch processing, unless used with sliding window
techniques. However, online processing of newly arriving data is possible
with extension methods that are presented in Section 2.7. This does not up-
date the training model, except for the densities, but makes it possible to
classify new data points.

11. Diffusion maps are based on a closed form solution of the objective. This
means that it can be categorized as an dimensionality reduction method
based on exact optimization. The goal of finding diffusion distance preserv-
ing low-dimensional coordinates is achieved.

12. The pairwise distances are used as the type of criterion to be optimized. The
Euclidean distances between the embedded points are as close as possible
to the disffusion distances between the dataset points.

A categorizing hierarchy of unsupervised data analysis methods is presented in
Figure 8 (Lee and Verleysen, 2007). Diffusion maps are placed in the geometric
distance-based nonlinear dimensionality method part of the hierarchy.

From the knowledge discovery perspective, diffusion maps are a modular
part of the process. Its specific mathematical features provide low-dimensional
representations similar to other spectral methods. As a hard dimensionality re-
duction method, diffusion mapping could be useful for unfolding initial nonlin-
ear structures in the data. On the other hand, using them after an initial lin-
ear transformation, the low-level nonlinearities could be found. In the future
more work on the combination of methodologies is needed, especiallly clustering
methods and their theoretical usefulness in spectral clustering tasks.

The various case studies and their topics show that the introduced method-
ology can be used for knowledge discovery as part of the transformation and data
mining steps. The datasets in the case studies differ in their source, case specific
data mining feature extraction and end result needs. As previously presented,
diffusion map framework was useful in finding a meaningful low-dimensional
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FIGURE 8 Hierarchy of some unsupervised data analysis methods used for latent vari-
able separation and dimensionality reduction (Lee and Verleysen, 2007).

representation of the datasets. Its use for visualization is also helpful.
Stemming from the Gaussian kernel definition, the ability to change the

neighborhood in transition probability sense is an advantage because the shape of
the embedding can be controlled. However, finding the correct embedding is not
always easy. This estimation of the different metaparameters of diffusion map,
namely ε, t and the number m of relevant eigenvectors still needs more analytical
models or heuristic estimates. However, the situation with many applications is
that only the domain knowledge will reveal the best values from the knowledge
discovery point of view.

Diffusion map methods find the optimal solution for the distance preserving
problem. However, this does not mean that the solution is always relevant to the
knowledge discovery problem. In such cases it has been a step in an explorative
data mining process, which might lead to another direction. The case-specific
meaningful information might not be in the eigenvectors corresponding to the
largest eigenvalues or in the least correlated eigenvectors. This emphasizes the
importance of domain area expertise.

Diffusion maps are usable with moderately sized datasets. In practice, the
size of the pairwise distance matrix is a real drawback. This can be overcome to
some extent with extension methods but then the representative data points must
be found for training. Ultimately this comes to the question of sampling the data
so that it represents the underlying phenomenon in a reliable way.

Another concern is that datasets do not usually exhibit nonlinear behavior
that would necessiate the use of nonlinear methods, at least on the global level.
A basic PCA procedure finds roughly the same structure. However, the kernel
approach gives means to modify the mapping for the current task. Moreover,
the overall mathematical framework facilitates new kernel inventions that are
mathematically sound and more adapted to the data.



4 CONCLUSION

As the storage and manipulation of data become less expensive and more avail-
able, the need to understand collected data drives the development of new data
mining methodologies. This dissertation discusses the use of diffusion map di-
mensionality reduction methodology to discover knowledge in several applica-
tion cases.

There are two main perspectives in this study. The first one is the knowl-
edge discovery process. It is a useful tool for data analysis and makes the flow
from the data sources to the interpreted knowledge an understandable task. The
second perspective is the diffusion map framework and also its place in the data
transformation and data mining parts of the knowledge discovery process. Diffu-
sion map is a nonlinear and distance preserving method, which make it suitable
for complex data behavior. The mathematical theory behind diffusion maps en-
ables their use in practical situations to solve data mining problems. Combining
the two perspectives creates a data mining pipeline that is both practical and on
such an abstraction level that it is easier to understand.

The practical cases include fault detection and system monitoring. Network
anomaly detection, gear fault detection, automated research literature mapping
and brain imaging clustering show that the introduced methodology can be used
to create knowledge about these complex datasets. The datasets in the case stud-
ies differ in their source, case specific data mining feature extraction and end
result needs. Diffusion map framework was useful in finding meaningful low-
dimensional representations of the datasets.

The estimation of the different metaparameters of diffusion map still needs
more analytical models or heuristic estimates. However, the situation with many
applications is that only domain knowledge will reveal the best values from the
knowledge discovery point of view. In the future more work on the combina-
tion of methodologies is needed, especiallly clustering methods and their useful-
ness in spectral clustering tasks. There are new possibilities in bringing diffusion
maps to dynamic online environments and also finding more accurate kernels to
describe the data.
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YHTEENVETO (FINNISH SUMMARY)

Tämä väitöskirja, Tietämyksen löytäminen diffuusiokuvauksia käyttäen, käsittelee kor-
keaulotteisen datan hyödyntämistä. Aineistojen varastointi ja käsittely on yhä
edullisempaa ja yleisempää, mikä on mahdollistanut piilossa olevan tietämyk-
sen löytämisen massiivisista tietovarastoista. Tämä mahdollisuus ajaa ymmärtä-
mään kerättyä dataa ja kehittämään tiedonlouhintamenetelmiä. Väitöskirja tutkii
diffuusiokuvausten käyttöä aineiston ulottuvuuksien vähentämiseksi ja tiedon
löytämiseksi erilaisissa käytännön tapauksissa. Erityisesti mielenkiinto kohdis-
tuu korkeaulotteisiin aineistoihin, joissa on suuri määrä mitattuja muuttujia ana-
lyysimenetelmien ja myös ihmisen näkökulmasta. Ulottuvuuden pienentäminen
on menetelmä, jossa korkeaulotteisesta aineistosta erotetaan uusia piirteitä, joi-
den lukumäärä on pienempi kuin syötteessä, kuitenkin siten, että informaatio-
sisältö pysyy samana. Diffuusiokuvaus on ulottuvuuden pienentämiseen tarkoi-
tettu menetelmä, joka soveltuu epälineaarisen aineiston analysointiin.

Tutkimuksessa on kaksi näkökulmaa. Ensimmäinen on tietämyksen löytä-
minen aineistosta. Tämä prosessimalli on hyödyllinen data-analyysin työkalu ja
kuvaa analyysin kulun tietolähteestä tulkittuun tietämykseen asti ymmärrettä-
vänä tehtävänä. Toinen näkökulma on diffuusiokuvausmenetelmät ja niiden si-
joittuminen tiedon muokkaamisen ja tiedonlouhinnan osioihin tietämyksen löy-
tämisen prosessissa. Diffuusiokuvaus on epälineaarinen ja etäisyyden säilyttä-
vä menetelmä, mikä tekee siitä hyödyllisen monimutkaisesti käyttäytyvää da-
taa käsiteltäessä. Matemaattinen teoria diffuusiokuvauksen takana mahdollistaa
sen käytännöllisen hyödyntämisen tiedonlouhintaongelmia ratkottaessa. Näiden
kahden näkökulman yhdistäminen luo tiedonlouhintatavan, joka on käytännöl-
linen, ja joka toimii sellaisella abstraktiotasolla, että kokonaisuus on helpompi
ymmärtää.

Esitetyt esimerkkitapaukset jakautuvat ryhmittelyyn ja kunnonseurantaan.
Ryhmittelyä diffuusiokuvauksen avulla käytettiin automatisoituun kirjallisuu-
den kartoittamiseen ja aivokuvantamiseen. Kunnonvalvontalähtökohtaa käytet-
tiin vaihteiden vianseurantaan ja tietoverkkoliikenteen poikkeavuuksien havait-
semiseen. Tulokset osoittavat menetelmien soveltuvan tietämyksen löytämiseen
monimutkaisista aineistoista. Tapausten aineistot eroavat lähteensä, tapauskoh-
taisen piirteiden erotuksen ja tarvittavien tulosten osalta. Diffuusiokuvaus osana
järjestelmää oli hyödyllinen löytämään merkityksellisiä matalaulotteisia kuvauk-
sia.
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APPENDIX 1 IMPLEMENTATION

Listing 1 provides a basic implementation of the diffusion map algorithm. It is
written in syntax compatible with Matlab or Octave. With a matrix-oriented pro-
gramming language most of the steps can be expressed as matrix multiplications.

1 function [V, l] = diffusion_map(x, epsilon, kernel, a, p, t)

2 % Creates a dimension-reduced version of input matrix x.

3 % Compares all the time points to each other and maps

4 % using the eigenvalues and eigenvectors.

5 % Needs pdist (in Octave statistics package or Matlab statistics toolbox).

6 % 2012 Tuomo Sipola (tuomo.sipola@jyu.fi)

7 % [V, l] = diffusion_map(x, epsilon, kernel, a, p, t)

8 % Parameters:

9 % x Input data which should be in format time x parameters.

10 % epsilon Epsilon value for the kernel.

11 % kernel Distance function, ’euclidean’ (default). Optional.

12 % a The alpha value for diffusion families, 0, 0.5 or 1. Optional.

13 % p To which power the distance is put.

14 % t How many time steps to use, default 1. Optional.

15 % Returns:

16 % V Eigenvectors in format values x vectors.

17 % l Eigenvalues in descending order.

18

19 if nargin < 3

20 kernel = ’euclidean’;

21 end

22 if nargin < 4

23 a = 0;

24 end

25 if nargin < 5

26 p = 2;

27 end

28 if nargin < 6

29 t = 1;

30 end

31

32 % Create the kernel.

33 K = squareform(pdist(x, kernel));

34 K = exp( - K.^p ./ epsilon );

35

36 % Create different families of diffusions.

37 if a > 0

38 Q = diag(sum(K));

39 W = Q^-a * K * Q^-a;

40 else

41 W = K;

42 end



48

43

44 % Calculate the integral of weights.

45 d = sum(W);

46

47 % Create a Markov probability matrix and symmetrize it.

48 D2 = diag(1./sqrt(d));

49 S = D2 * W * D2;

50

51 % Calculate the 32 first eigenvalues and eigenvectors.

52 [U, L, T] = svds(S, 32);

53 l = diag(L.^t);

54

55 % Take right eigenvectors and normalize with the constant first one.

56 V = D2 * U;

57 V = V / V(1,1);

LISTING 1 Diffusion map implementation
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Abstract. The goal of this study is to detect anomalous queries from
network logs using a dimensionality reduction framework. The fequencies
of 2-grams in queries are extracted to a feature matrix. Dimensionality
reduction is done by applying diffusion maps. The method is adaptive
and thus does not need training before analysis. We tested the method
with data that includes normal and intrusive traffic to a web server. This
approach finds all intrusions in the dataset.

Keywords: intrusion detection, anomaly detection, n-grams, diffusion
map, data mining, machine learning

1 Introduction

The goal of this paper is to present an adaptive way to detect security attacks
from network log data. All networks and systems can be vulnerable to different
types of intrusions. Such attacks can exploit e.g. legitimate features, misconfig-
urations, programming mistakes or buffer overflows [15]. This is why intrusion
detection systems are needed. An intrusion detection system gathers data from
the network, stores this data to logfiles and analyzes it to find malicious or
anomalous traffic [19]. Systems can be vulnerable to previously unknown at-
tacks. Because usually these attacks differ from the normal network traffic, they
can be found using anomaly detection [2].

In modern networks clients request and send information using queries. In
HTTP traffic these queries are strings containing arguments and values. It is easy
to manipulate such queries to include malicious attacks. These injection attacks
try to create requests that corrupt the server or collect confidential information
[18]. Therefore, it is important to analyze data collected from logfiles.

An anomaly is a pattern in data that is different from the well defined normal
data [2]. In network data, this usually means an intrusion. There are two main
approaches for detecting intrusions from network data: misuse detection and
anomaly detection [19]. Misuse detection means using predefined attack signa-
tures to detect the attacks, which is usually accurate but detecting new types of
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attacks is not possible. In anomaly detection the goal is to find actions that some-
how deviate from normal traffic. This way it is possible to detect previously un-
known attacks. However, not all anomalous traffic is intrusive. This means there
might be more false alarms. Different kinds of machine learning based methods,
such as self-organizing maps and support vector machines, have been used in
anomaly detection [20, 23]. Information about other anomaly detection methods
can be found in the literature [19]. Unsupervised anomaly detection techniques
are most usable in this case, because no normal training data is required [2].

This study takes the approach of dimensionality reduction. Diffusion map is a
manifold learning method that maps high-dimensional data to a low-dimensional
diffusion space [5]. It provides tools for visualization and clustering [6]. The
basic idea behind any manifold learning method is the eigen-decomposition of a
similarity matrix. By unfolding the manifold it reveals the underlying structure of
the data that is originally embedded in the high-dimensional space [1]. Diffusion
maps have been applied to various data mining problems. These include vehicle
classification by sound [21], music tonality [10], sensor fusion [12], radio network
problem detection [25] and detection of injection attacks [8]. Advantages of this
approach are that the dimensionality of the data is reduced and that it can be
used unsupervised [2].

2 Method

2.1 Feature extraction

First let us define an n-gram as a consecutive sequence of n characters [7]. For
example, the string ababc contains unique 2-grams ab, ba and bc. The 2-gram
ab appears twice, thus having frequency of 2. A list of tokens of text can be
represented with a vector consisting of n-gram frequencies [7]. Feature vector
describing this string would be xababc = [2, 1, 1]. The only features extracted are
n-gram frequencies. Furthermore, syntactic features of the input strings might
reveal the differences between normal and anomalous behavior. Computed n-
grams can extract features that describe these differences.

The frequencies are collected to a feature matrix X whose rows correspond to
lines in logfiles and columns to features. These n-gram frequencies are key-value
fields, variable-length by definition. Key strings are ignored and 2-grams are
produced from each parameter value. The count of occurrences of every occurring
2-gram is summed. In practice n-gram tables produced from real-life data are
very sparse, containing columns in which there are only zero occurrences. To
minimize the number of columns, the processing is done in two passes. If a
column contains no variation between entries, that column is not present in
the final numeric matrix X. That makes it reasonable to use diffusion maps to
process n-gram tables directly with no further preprocessing.

2.2 Dimensionality reduction

The number of extracted features is so large that dimensionality reduction is
performed using diffusion maps. It is a manifold learning method that embeds the
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original high-dimensional space into a low-dimensional diffusion space. Anomaly
detection and clustering are easier in this embedded space [6].

The recorded data describe the behavior of the system. Let this data be
X = {x1, x2, . . . , xN} , xi ∈ R

n. Here N is the number of samples and n the
dimension of the original data. In practice the data is a N × n matrix with
features as columns and each sample as rows.

At first, an affinity matrix W is constructed. This calculation takes most of
the computation time. The matrix describes the distances between the points.
This study uses the common Gaussian kernel with Euclidean distance measure,
as in equation 1 [6, 16].

Wij = exp
(
−||xi − xj ||2

ε

)
(1)

The affinity neighborhood is defined by ε. Choosing the parameter ε is not
trivial. It should be large enough to cover the local neighborhood but small so
that it does not cover too much of it [21].

The rows of the affinity matrix are normalized using the diagonal matrix D,
which contains the row sums of the matrix W on its diagonal.

Dii =
N∑

j=1

Wij (2)

P expresses normalization that represents the probability of transforming
from one state to another. Now the sum of each row is 1.

P = D−1W (3)

Next we need to obtain the eigenvalues of this transition probability matrix.
The eigenvalues of P are the same with the conjugate matrix in equation 4. The
eigenvectors of P can be derived from P̃ as shown later.

P̃ = D
1
2 PD− 1

2 (4)

If we substitute the P in equation 4 with the one in equation 3, we get the
symmetric probability matrix P̃ in equation 5. It is called the normalized graph
Laplacian [4] and it preserves the eigenvalues [16].

P̃ = D− 1
2 WD− 1

2 (5)

This symmetric matrix is then decomposed with singular value decomposi-
tion (SVD). Because P̃ is a normal matrix, spectral theorem states that such a
matrix is decomposed with SVD: P̃ = UΛU∗. The eigenvalues on the diagonal of
Λ = diag([λ1, λ2, . . . , λN ]) correspond to the eigenvalues of the same matrix P̃
because it is symmetric. Matrix U = [u1, u2, . . . , uN ] contains in its columns the
N eigenvectors uk of P̃ . Furthermore, because P̃ is conjugate with P , these two
matrices share their eigenvalues. However, to calculate the right eigenvectors vk

of P , we use equation 6 and get them in the columns of V = [v1, v2, . . . , vN ] [16].
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V = D− 1
2 U (6)

The coordinates of a data point in the embedded space using eigenvalues in
Λ and eigenvectors in V are in the matrix Ψ in equation 7. The rows correspond
to the samples and the columns to the new embedded coordinates [6].

Ψ = V Λ (7)

Strictly speaking, the eigenvalues should be raised to the power of t. This
scale parameter t tells how many time steps are being considered when moving
from data point to another. Here we have set it t = 1 [6].

With suitable ε the decay of the spectrum is fast. Only d components are
needed for the diffusion map for sufficient accuracy. It should be noted that the
first eigenvector v1 is constant and is left out. Using only the next d components
the diffusion map for original data point xi is presented in equation 8. Here
vk(xi) corresponds to the ith element of kth eigenvector [6].

Ψd : xi → [λ2v2(xi), λ3v3(xi), . . . , λd+1vd+1(xi)] (8)

This diffusion map embeds the known point xi to a d-dimensional space.
Dimension of the data is reduced from n to d. If desired, the diffusion map may
be scaled by dividing the coordinates with λ1.

2.3 Anomaly detection

After obtaining the low-dimensional presentation of the data it is easier to clus-
ter the samples. Because spectral methods reveal the manifold, this clustering
is called spectral clustering. This method reveals the normal and anomalous
samples [13]. Alternatively, k-means or any other clustering method in the low-
dimensional space is also possible [17]. Another approach is the density-based
method [25].

Only the first few low-dimensional coordinates are interesting. They contain
most of the information about the manifold structure. We use only the dimension
corresponding to second eigenvector to determine the anomality of the samples.
At 0, this dimension is divided into two clusters. The cluster with more samples
is considered normal behavior. Conversely, the points in the other cluster are
considered anomalous [22, 11, 13]. The second eigenvector acts as the separating
feature for the two clusters in the low-dimensional space. The second eigenvalue
is the solution to the normalized cut problem, which finds small weights be-
tween clusters but strong internal ties. This spectral clustering has probabilistic
interpretation: grouping happens through similarity of transition probabilities
between clusters [22, 14].
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3 Results

3.1 Data acquisition

The data is acquired from a large real-life web service. The logfiles contain mostly
normal traffic, but they also include anomalities and actual intrusions. The log-
files are from several Apache servers and are stored in combined log format.
Listing below provides an example of a single logline. It includes information
about the user’s IP-address, time and timezone, the HTTP request including
used resource and parameters, Apache server response code, amount of data
sent to the user, the web page that was requested and used browser software.

127.0.0.1 - - [01/January/2011:00:00:01 +0300]
"GET /resource?parameter1=value1&parameter2=value2 HTTP/1.1"
200 2680 "http://www.address.com/webpage.html"
"Mozilla/5.0 (SymbianOS/9.2;...)"

The access log of a web site contains entries from multiple, distinct URLs.
Most of them point to static requests like images, CSS files, etc. We are not
focused to find anomalies at those requests because it is not possible to inject
code via static requests unless there are major deficiencies in the HTTP server
itself. Instead, we are focused in finding anomalies from dynamic requests be-
cause those requests are handled by the Web application, which is run behind
the HTTP server.

To reach this goal, the access log entries are grouped by the resource URL.
That is the part between host name and parameters in the HTTP URL scheme.
Those resources containing only HTTP GET requests with no parameters are
ignored. Each remaining resource is converted to a separate numerical matrix. In
this matrix, a row represents a single access log entry, and a column represents
an extracted feature.

Feature extraction is done in two passes. In the first pass the number of
features is determined, and in the second pass the resulting matrix is produced.
In our study we extracted the number of occurrences of 2-grams produced from
HTTP GET parameters. These frequencies are normalized with logarithm in
order to scale them. This ensures that the distances between the samples are
comparable.

3.2 Data analysis

To measure the effectiveness of the method the data is labeled so that classifi-
cation accuracy can be measured. However, this labeling is not used for training
the diffusion map. The class labels are not input for the method.

Diffusion map reveals the structure of the data, and all the anomalies are
detected. The n-gram features of the data are mapped to a lower dimensions.
Figure 1 shows the resulting low-dimensional diffusion space with ε = 100. The
normal behavior lies in the dense area to the lower right corner. Anomalous
points are to the left of 0.
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Figure 2 shows that the eigenvalues converge rapidly with ε = 100. This
means that the first few eigenvalues and eigenvectors cover most of the differ-
ences observed in the data. The first value is 1 and corresponds to the constant
eigenvector that is left out in the analysis. Eigenvalues λ2 = 0.331 and λ3 = 0.065
cover large portions of the data when compared to the rest that have values below
0.005.

10
−1

10
0

10
1

10
2

10
3

10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Accuracy of classification

Epsilon

A
cc

ur
ac

y

Fig. 3. Accuracy of classification changes when the parameter ε is changed.

Classification is tested with different values of ε, which defines the neigh-
borhood for diffusion map. Accuracy of classification is defined as accuracy =
(tp + tn)/(tp + fp + fn + tn). Figure 3 shows how the accuracy of classification
changes when ε is changed. Higher values of ε result in better accuracy. Precision
of classification is defined precision = tp/(tp+fp). The precision stays at 1 once
any anomalies are detected, which means that all the anomalies detected are real
anomalies regardless of the accuracy [9, p. 361].

For comparison, principal component analysis (PCA) is performed on the
same normalized feature matrix [9, p. 79]. Results are very similar to the dif-
fusion map approach, because of the simple structure of the feature matrix.
Furthermore, PCA reaches the same accuracy and precision as diffusion map.
The low-dimensional presentation is also very similar. Figure 4 shows the first
two coordinates of PCA.

We also apply support vector machines (SVM) to the same data [9, p. 337–
344]. LIBSVM implementation is used [3]. We use one-class SVM with RBF
kernel function. A subset of the data is used in the model selection for SVM (500
lines randomly selected). Then the rest of the data is used to test the method.
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Fig. 4. PCA of the dataset, first two coordinates. The Y-axis of this figure has been
reversed for better visual comparison with diffusion map.

The data labels are unknown, so the training data is not ”clean” and contains
some intrusions as well. It is possible to find the right parameters (ν and γ) for
model selection if pre-specified true positive rate is known. The parameters which
give a similar cross-validation accuracy can be selected [3]. However, this kind of
information is not available. Fully automatic parameter selection for OC-SVM
could be achieved by using more complicated methods, such as evolving training
model method [24]. In this study the parameter selection is done manually. At
best the accuracy is 0.999 and precision 0.998.

4 Conclusion

The goal of this study is to find security attacks from network data. This goal
is met since all the known attacks are found. The proposed anomaly detection
scheme could be used for query log analysis in real situations. In practice the
boundary between normal and anomalous might not be as clear as in this exam-
ple. However, the relative strangeness of the sample could indicate how severe
an alert is.

The diffusion map framework adapts to the log data. It assumes that the
data lies on a manifold, and finds a coordinate system that describes the global
structure of the data. These coordinates could be used for further analysis of
characteristics of anomalous activities.

Because all the methods perform extremely well, the data in question is rather
sparse and the discriminating features are quite evident from the feature matrix.
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This is the merit of n-gram feature extraction which creates a feature space that
separates the normal behavior in a good manner. The features describe the data
clearly, and they are easy to process afterwards.

One advantage of the diffusion map methodology is that it has only one meta-
parameter, ε. It can be estimated with simple interval search. If for some reason
the threshold sensitivity needs to be changed, ε gives the flexibility to adapt to
the global structure. For comparison, the SVM we used has two parameters, ν
and γ. Searching the best parameters for the application gets more difficult as
the number of parameters increases.

The presented anomaly detection method performs well on real data. As
an unsupervised algorithm this approach is well suited to finding previously
unknown intrusions. This method could be applied to offline clustering as well
as extended to a real-time intrusion detection system.
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Abstract

Dynamic web services are vulnerable to a multitude of intrusions that could be pre-
viously unknown. Server logs contain vast amounts of information about network
traffic, and finding attacks from these logs improves the security of the services. In
this research features are extracted from HTTP query parameters using 2-grams.
We propose a framework that uses dimensionality reduction and clustering to iden-
tify anomalous behavior. The framework detects intrusions from log data gathered
from a real network service. This approach is adaptive, works on the application
layer and reduces the number of log lines that needs to be inspected. Furthermore,
the traffic can be visualized.

Keywords: intrusion detection, anomaly detection, n-grams, diffusion map, data
mining, machine learning

1 Introduction
The goal of this paper is to present an adaptive way to detect security attacks from

network log data. All networks and systems can be vulnerable to different types of

intrusions. Such attacks can exploit e.g. legitimate features, misconfigurations, pro-

gramming mistakes or buffer overflows [1]. This is why intrusion detection systems
are needed. An intrusion detection system gathers data from the network, stores these

data to log files and analyzes them to find malicious or anomalous traffic [2]. Sys-

tems can be vulnerable to previously unknown attacks, commonly known as zero-day

attacks [3]. Because usually these attacks differ from the normal network traffic, they

can be found using anomaly detection [4].

In modern networks clients request and send information using queries. In HTTP

traffic these queries are strings containing arguments and values. It is easy to manip-

ulate such queries to include malicious attacks. These injection attacks try to create

requests that corrupt the server or collect confidential information [5]. Therefore, it is

important to analyze the collected data in log files. Most intrusion detection systems

∗Now with C2 SmartLight Ltd.
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analyze TCP packet data. There are not many application layer IDS systems available.

Because the HTTP log data are very different from network packet data, they both need

to be analyzed. Different attacks can be performed on different layers.

An anomaly is a pattern in data that is different from the well defined normal

data [4]. In network data, this usually means an intrusion. There are two main ap-

proaches for detecting intrusions from network data: misuse detection and anomaly
detection [2]. Misuse detection means using predefined attack signatures to detect the

attacks, which is usually accurate but detecting new types of attacks is not possible. In

anomaly detection the goal is to find actions that somehow deviate from normal traf-

fic. This way it is possible to detect previously unknown attacks. However, not all

anomalous traffic is intrusive. This means there might be more false alarms. Different

kinds of machine learning based methods, such as self-organizing maps and support

vector machines, have been used in anomaly detection [6, 7]. Information about other

anomaly detection methods can be found in the literature [2]. Unsupervised anomaly
detection techniques are most usable in this case, because no normal training data are

available [4]. These techniques work without prior knowledge of attack patterns. This

kind of adaptive framework is suitable for a posteriori network log analysis.

This study takes the approach of dimensionality reduction. Because the number

of dimensions of the feature space grows large and sparse when analyzing textual in-

formation, such as log files, this is one of the most feasible techniques. Furthermore,

the sparsity of data suggests about the underlying low dimensional structure. Almost

the same amount of information can be represented with lower number of dimensions.

Diffusion map is a manifold learning method that maps high-dimensional data to a low-

dimensional diffusion space [8]. It provides tools for visualization and clustering [9].

The basic idea behind any manifold learning method is the eigendecomposition of a

similarity matrix. By unfolding the manifold it reveals the underlying structure of the

data that is originally embedded in the high-dimensional space [10]. Diffusion maps

have been applied to various data mining problems. These include vehicle classification

by sound [11], music tonality [12], sensor fusion [13], radio network problem detection

[14, 15] and detection of injection attacks [16]. In addition to the advantage of reduced

number of dimensions, the approach can be used for unsupervised learning [4].

2 Related research
Kruegel and Vigna [17] analyzed the parameter values of HTTP queries. The static

queries with no parameters were removed. The underlying assumption is that attack

patterns differ from normal traffic and that this difference can be expressed quantita-

tively. They used several different analyzing methods, such as attribute length and char-

acter distribution. The learning was based on previous data. The data were not labeled.

The analysis of character distribution is similar to our research, because essentially the

characters are n-grams with the length 1. We use 2-grams for higher detection rates,

but we will also get more dimensions in the data matrices.

Hubballi et al. [18] used layered higher order n-grams for detecting intrusions.

However, this analysis was not done on application layer data, but on the network

packet payloads. Higher order n-grams are n-grams where n > 2. This means that

the method is computationally more expensive, but rare events might be detected more

accurately. The n-grams are organized into bins based on their frequency. The anal-

ysis starts with 1-grams, and it moves to higher n-grams incrementally to get higher

accuracy. In the research the number of distinct and unique n-grams went up almost
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linearly as n increased. Therefore, using higher order n-grams might not be as complex

in practice as it could be theoretically. For example, the theoretical maximum number

for 3-grams in ascii-characters is 2563, which is considerably higher than the case with

2-grams.

Dimensionality reduction has been discussed in the context of anomaly detection

from networks. Ringberg et al. studied the IP packet data and tried to detect anomalies

using principal component analysis. They also identified the main challenges when

using principal component dimensionality reduction approach. The finding about large

anomalies contaminating the subspace is relevant also to our research. However, their

network architecture is more complex than ours [19]. Callegari et al. analyzed similar

packet data [20]. These studies used low-level IP packet datasets that need specific ag-

gregation before they can be processed. Our research concerns the application level log

data, which is text, while the IP packet datasets are numeric. In addition, we compare

the results of principal component analysis and diffusion maps.

Diffusion maps have been applied in the network security context. David explored

the use of diffusion map methods to find injection attacks in hyper-networks. His data

included SQL injection examples that used a similar feature extraction as our research.

The n-gram feature extraction was applied to tokenized SQL [16]. Our research, in

contrast, focuses on the raw textual queries. Furthermore, David and Averbuch used

a localized diffusion folder approach to classify network protocols, among other ex-

amples. Their data contains low-level features such as duration and the number of

bytes [21]. However, our data comes from the application layer of the network, specif-

ically web server logs. These are different from the low-level network features and

contain lots of textual information in the form of queries. Moreover, we use the theo-

retical framework of spectral clustering as the basis of our research.

3 Methodology
Straightforward numerical methods are difficult to apply to textual data such as log

files. Therefore, log data must be transformed into feature space. This mapping of

textual information to numerical matrix enables mathematical analysis of the original

log lines.

However, this leads to a large number of dimensions in the feature space. For

efficient analysis, classification and visualization the number of dimensions must be

reduced. This gives the opportunity to use a multitude of classification algorithms.

The proposed method consists of the following steps:

1. Removing lines that do not contain parameters.

2. Feature extraction from the log line using 2-grams.

3. Dimensionality reduction of the features.

4. Classifying the lines either as normal or attack.

After these steps the log file can be visualized as a figure where the attacks are

more easily seen than from a text file. Furthermore, the suspected attack lines can be

inspected in more depth. This facilitates finding abnormal activities because only these

suspected lines are inspected, instead of thousands in the original log.
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3.1 Feature extraction
The features include 2-grams from HTTP query parameters. The log files are simple

text files where each line represents one query sent from the client to the server. Ex-

tracting the true intention of the query is challenging, and the text needs to be converted

to a more machine-friendly format. The feature extraction essentially means converting

this textual data into numerical matrices.

First let us define an n-gram as a consecutive sequence of n characters [22]. N-

gram is a substring with length of n. For example, the string ababc contains unique

2-grams ab, ba and bc. The 2-gram ab appears twice, thus having frequency of 2. A

list of tokens of text can be represented with a vector consisting of n-gram frequen-

cies [22]. Feature vector describing this string would be xababc = [2, 1, 1]. The only

features extracted are n-gram frequencies. Furthermore, syntactic features of the input

strings might reveal the differences between normal and anomalous behavior. Com-

puted n-grams can extract features that describe these differences. It is assumed that

an anomalous query contains some text in the parameter part that differs from normal

behaviour. This means that it must contain some n-grams that appear rarely in the data.

Here is an example of constructing the feature matrix using the n-gram analysis

process with two words, anomaly and analysis. From these words we get the unique

2-grams ��, ��, ��, ��, ��, ��, ��, ��, �� and ��. From this information we can

construct a matrix with the n-gram frequencies.

an no om ma al ly na ys si is

1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1

The feature matrix is constructed in this way, including all the different strings that

appear in the parameter fields on each query. Each log line corresponds to a row in

the matrix. From this we can see that there are 10 unique 2-grams in this example.

The logs are ascii-coded, so they can contain 256 different characters. The theoretical

maximum number for unique 2-grams using ascii-characters is 2562, but in practice

we did not get even near to that number. However, in a very varied and big dataset the

number of dimensions could get very high.

The frequencies are collected to a feature matrix X . These n-gram frequencies are

key-value fields, variable-length by definition. Key strings are ignored and 2-grams

are produced from each parameter value. The count of occurrences of every occurring

2-gram is summed. In practice n-gram tables produced from real life data are very

sparse, containing columns in which there are only zero occurrences. To minimize

the number of columns, the processing is done in two passes, first determining the

number of unique n-grams and then analyzing the frequencies. If a column contains

no variation between entries, that column is not present in the final numeric matrix X .

Therefore, only the columns that actually contain some useful information about the

features are included in the analysis.

With this preprocessing technique it is possible to use n-grams whose value of n is

higher than 2. However, the number of unique n-grams will increase and therefore the

number of dimensions will increase as well.

3.2 Dimensionality reduction
The number of extracted features is so large that dimensionality reduction is performed

using principal component analysis and diffusion map. Diffusion map is a manifold
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learning method that embeds the original high-dimensional space into a low-dimen-

sional diffusion space. Anomaly detection and clustering are easier in this embedded

space [9].

The recorded data describe the behavior of the system. Let this data be X =
{x1, . . . ,xN}, xi ∈ R

n. Here N is the number of samples and n the dimension of the

original data. In practice the data are in a N × n matrix with features as columns and

each sample as rows.

3.2.1 Principal component analysis

Principal component analysis (PCA) tries to extract orthogonal components maximiz-

ing their variance from the data. This simplifies the representation of the information

within the data and also facilitates the analysis of the structure and features in the data.

The principal components are linear combinations of the original features. The first

principal component contains the largest amount of variance. PCA reveals the most

information in terms of variance, but this does not necessarily mean that it separates

different clusters in an optimal way [23, 24, 25].

PCA performs the eigendecomposition on the covariance matrix C of the centered

data matrix Xc. The decomposition C = UΛU∗ gives the eigenvectors in U that map

the points in X to a low-dimensional space. This mapping can be calculated with

XPCA = XU . Another approach is to take the singular value decomposition (SVD) of

the original matrix X . One way to interpret this is as rotation of axes to find the most

important features. The new principal components are in the direction of most variance

in the data and thus represent the most differentiating combination of features [23, 24,

25].

As with many dimensionality reduction methods using eigendecompositions, the

number of selected components becomes a problem. One way to do this is to seek

for the eigengap, i.e. a big change of eigenvalues. This way the eigenvalues reveal the

principal components that cover most of the variance [23, 24, 25].

PCA is a linear method and has difficulties finding nonlinear dependencies between

features. It has initial assumptions that restrict its use for latent variable separation and

nonlinear dimensionality reduction [25].

3.2.2 Diffusion map

At first, an affinity matrix W is constructed. This calculation takes most of the compu-

tation time. The matrix describes the distances between the points. This study uses the

common Gaussian kernel with Euclidean distance measure, as in equation 1 [9, 26].

Wi j = exp

(
−||xi − x j||2

ε

)
(1)

The affinity neighborhood is defined by ε . Choosing the parameter ε is not trivial.

It should be large enough to cover the local neighborhood but small so that it does not

cover too much of it [11].

The rows of the affinity matrix are normalized using the diagonal matrix D, which

contains the row sums of the matrix W on its diagonal.

Dii =
N

∑
j=1

Wi j (2)
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P expresses normalization that represents the probability of transforming from one

state to another. Now the sum of each row is 1.

P = D−1W (3)

Next we need to obtain the eigenvalues of this transition probability matrix. The

eigenvalues of P are the same with the conjugate matrix in equation 4. The eigenvectors

of P can be derived from P̃ as shown later.

P̃ = D
1
2 PD− 1

2 (4)

If we substitute the P in equation 4 with the one in equation 3, we get the symmetric

probability matrix P̃ in equation 5. It is called the normalized graph Laplacian [27] and

it preserves the eigenvalues [26].

P̃ = D− 1
2 WD− 1

2 (5)

This symmetric matrix is then decomposed with singular value decomposition (SVD).

Because P̃ is a normal matrix, spectral theorem states that such a matrix is decomposed

with SVD: P̃ = UΛU∗. The singular values of this symmetric square matrix equal

to its eigenvalues, which lie on the diagonal of Λ = diag([λ1,λ2, . . . ,λN ]). Matrix

U = [u1,u2, . . . ,uN ] contains in its columns the N eigenvectors uk of P̃. Furthermore,

because P̃ is conjugate with P, these two matrices share their eigenvalues. However, to

calculate the right eigenvectors vk of P, we use equation 6 and get them in the columns

of V = [v1,v2, . . . ,vN ] [26].

V = D− 1
2 U (6)

The coordinates of a data point in the embedded space using eigenvalues in Λ and

eigenvectors in V are in the matrix Ψ in equation 7. The rows correspond to the samples

and the columns to the new embedded coordinates [9].

Ψ = V Λ (7)

Strictly speaking, the eigenvalues should be raised to the power of t. This scale

parameter t tells how many time steps are being considered when moving from data

point to another. Here we have set it t = 1 [9].

With suitable ε the decay of the spectrum is fast. Only d components are needed for

the diffusion map for sufficient accuracy. It should be noted that the first eigenvector

v1 is constant and is left out. Using only the next d components the diffusion map

for original data point xi is presented in equation 8. Here vk(xi) corresponds to the ith
element of kth eigenvector [9].

Ψd : xi → [λ2v2(xi),λ3v3(xi), . . . ,λd+1vd+1(xi)] (8)

This diffusion map embeds the known point xi to a d-dimensional space. Dimen-

sion of the data are reduced from n to d. If desired, the diffusion map may be scaled

by dividing the coordinates with λ1.
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3.3 Anomaly detection
After obtaining the low-dimensional presentation of the data it is easier to cluster the

samples. Because spectral methods reveal the manifold, this clustering is called spec-

tral clustering. This method reveals the normal and anomalous samples [28]. Alter-

natively, k-means or any other clustering method in the low-dimensional space is also

possible [29]. Another approach is the density-based method [14].

Only the first few low-dimensional coordinates are interesting. They contain most

of the information about the manifold structure. For diffusion map we use only the

dimension corresponding to second eigenvector to determine the anomality of the sam-

ples. At 0, this dimension is divided into two clusters. The cluster with more samples is

considered normal behavior. Conversely, the points in the other cluster are considered

anomalous [30, 31, 28]. The second eigenvector acts as the separating feature for the

two clusters in the low-dimensional space. The second eigenvalue is the solution to the

normalized cut problem, which finds small weights between clusters but strong internal

ties. This spectral clustering has probabilistic interpretation: grouping happens through

similarity of transition probabilities between clusters [30, 32]. For PCA we use the first

principal component in a similar way.

In practice the border between the normal and anomalous behavior might be un-

clear. This is the case especially with unsupervised learning, or when exploring the

data for the first time. The normal cluster is usually very dense, and most of the data

points lie within that cluster. The other points can be interpreted as deviating from the

normal state, and thus anomalous.

4 Case 1: Validation with labeled data

4.1 Data acquisition
The data are acquired from a large real life web service. Let us call this dataset “A”.

This case has been presented in an earlier publication [33]. The log files contain mostly

normal traffic, but they also include anomalities and actual intrusions. The log files are

from several Apache servers and are stored in combined log format. Listing below

provides an example of a single log line. It includes information about the user’s IP

address, time and timezone, the HTTP request including used resource and parameters,

Apache server response code, amount of data sent to the user, the web page that was

requested and used browser software.
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The access log of a web site contains entries from multiple, distinct URLs. Most

of them point to static requests like images, CSS files, etc. We do not focus on finding

anomalies from those requests because it is not possible to inject code via static requests

unless there are major deficiencies in the HTTP server itself. Instead, we focus on

finding anomalies from dynamic requests because those requests are handled by the

web application, which is run behind the HTTP server.

To reach this goal, the access log entries are grouped by the resource URL. That

is the part between host name and parameters in the HTTP URL scheme. Resources
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containing only HTTP GET requests with no parameters are ignored. Each remaining

resource is converted to a separate numerical matrix. In this matrix, a row represents a

single access log entry, and a column represents an extracted feature.

Feature extraction is done in two passes. In the first pass the number of features is

determined, and in the second pass the resulting matrix is produced. In our study we

extracted the number of occurrences of 2-grams produced from HTTP GET parame-

ters. In the example above, the parameter values form a string ������������. This

string is then analyzed for 2-gram frequencies. These frequencies are normalized with

logarithm in order to scale them. This ensures that the distances between the samples

are comparable.

4.2 Data analysis
To measure the effectiveness of the method the data are labeled so that classification

accuracy can be measured. However, this labeling is not used for training the diffusion

map. The class labels are not input for the method.

Diffusion map reveals the structure of the data, and all the anomalies are detected.

The n-gram features of the data are mapped to lower dimensions. Figure 1 shows the re-

sulting low-dimensional diffusion space with ε = 100. The normal behavior (N=2999)

lies in the dense area to the upper left corner. Anomalous points (N=1293) are to the

right of 0.
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Figure 1: Two-dimensional diffusion map of the dataset A.

Figure 2 shows that the eigenvalues converge rapidly with ε = 100. This means

that the first few eigenvalues and eigenvectors cover most of the differences observed

in the data. The first value is 1 and corresponds to the constant eigenvector that is left

out in the analysis. Eigenvalues λ2 = 0.331 and λ3 = 0.065 cover large portions of the

data when compared to the rest that have values below 0.005.
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Figure 2: Eigenvalues of transition matrix with ε = 100 (dataset A).

Classification is tested with different values of ε , which defines the neighborhood

for diffusion map. Accuracy of classification is defined as accuracy = (t p+ tn)/(t p+
f p + f n + tn). Figure 3 shows how the accuracy of classification changes when ε is

changed. Higher values of ε result in better accuracy. Precision of classification is

defined precision = t p/(t p + f p). The precision stays at 1 once any anomalies are

detected, which means that all the anomalies detected are real anomalies regardless of

the accuracy [23, p. 361].

For comparison, principal component analysis (PCA) is performed on the same

normalized feature matrix [23, p. 79]. Results are very similar to the diffusion map

approach, because of the simple structure of the feature matrix. This suggests that

data points are linearly dependent. Furthermore, PCA reaches the same accuracy and

precision as diffusion map. The low-dimensional presentation is also very similar.

Figure 4 shows the first two coordinates of PCA.

5 Case 2: Unknown data

5.1 Data acquisition
After testing the methods with known data, we now analyze data that is totally un-

known. We call this dataset “B”. This is the realistic situation with the web service

that we are trying to analyze. There is no previous information about any attacks or

other anomalies. The goal is to find a small amount of interesting lines that can then

be analyzed more accurately. The number of log lines is so big that it is impossible to

check all the lines manually. This is why anomaly detection is needed.

We start with relatively new dataset that has about 10 million lines. However, the

lines with no parameters in the HTTP queries can be filtered out, because they are
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Figure 4: PCA of dataset A, first two coordinates.
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not a big security risk. This leaves us with 2.5 million lines. These lines are then

divided into different files based on the HTTP request URI. The entire log file cannot

be analyzed at once, because different resources have very different parameters. The

normal parameters for one single URI are usually quite similar, however. It makes

more sense trying to analyze them individually. The number of different resources is

quite high, more than 80 000, but many of the resources include just a few lines. In this

case, it is sufficient to analyze some of the most frequently used resources. In addition

to finding anomalies, this will give us more information about the web service traffic

in general. The traffic can also be visualized.

After preprocessing the number of unique 2-grams in the most used resource URI

was more than 1100. This means that dimensionality reduction is definitely needed, but

the number of dimensions is not close to the theoretical maximum of 2562 2-grams.

The new log file acquired for this case is in a different format than the log file

analyzed in the first case. Some additional information, such as time in UNIX time,

is also included. However, this information is not used in this analysis. The features

extracted are the same as in the previous case. The feature matrix is calculated only

from the parameter values. In this example the string to be analyzed would be �����.
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Feature matrix is constructed and logarithmic scaling applied in the same way as

presented earlier with the dataset A. Even though the number of lines in the log file

is quite high, the preprocessing phase takes only less than 10 minutes. Everything is

written into temporary files to save memory. If more memory is available, the prepro-

cessing could be changed to use it and it would get faster.

5.2 Data analysis
We choose two commonly used resources for analysis from the whole log data B. These

resources are called “B1” and “B2”. We aim to find possible intrusion attempts from

them. Dimensionality reduction is performed with both PCA and diffusion map. The

results are then compared. Choosing ε for diffusion map is done differently than for

dataset A. The sum L = ∑i, j Wi j plotted using logarithmic scale reveals the desirable

linear region for ε [34, 35]. The value is chosen from that range, however, because

even small changes of ε in that area affect the resulting embedding drastically, some

human discretion must be used. Classification is done using spectral clustering.

Dataset B1 turns out to be a simple case where most of the data points are similar.

The few deviations are easy to find from the feature matrix. First B1 is analyzed using

PCA. Figure 5 shows that most of the normal behavior (N=14206) is concentrated

to a very dense cluster. Our classifier assumes the points (N=87) to the right of the

normal cluster to be anomalous. This clustering is feasible because the log lines contain

actual previously unknown intrusions, although not all anomalies are intrusive. The

anomalous points also seem to form clusters. These could indicate different types of
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attacks that happen frequently. This information could be used to further protect the

service in the future.
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Figure 5: PCA of dataset B1.

Dataset B1 is also analyzed with diffusion map. The classification results are simi-

lar to PCA, even though the Figure 6 looks different. The normal behavior (N=14216)

is concentrated leaving the anomalies (N=77) to the right of zero based on the first

coordinate. The most differing anomalies are very far from the normal cluster. Some

anomalies are very close to the normal data points. This means that the border between

anomalous and normal traffic is not very clear. For this reason, 10 intrusion attempts

that PCA detected were not discovered by diffusion map. This explains the difference

in the number of found anomalies. Finding an optimal ε value would improve the

result. However, this is a difficult task because of the unsupervised approach. Even

though the low dimensional picture of PCA does not look as clear as the diffusion map,

the result for PCA is better due to 10 false negatives that diffusion map fails to detect.

Dataset B2 contains more difficult and complex queries. This set is an example

where the low dimensional representation by PCA and diffusion map are clearly differ-

ent. Figure 7 shows the PCA of this dataset. The structure of the dataset is seen from

the figure but the exact location of anomalies is difficult to find. This is because even

the normal query lines include long and dynamically changing strings. The sparse left

side is actually normal traffic, but there seems to be a lot of variation in the normal traf-

fic alone. The anomalies found by diffusion map are situated in the upper right corner

of the PCA representation. Data points do not form a distinct cluster, making anomaly

detection and clustering very difficult with this representation. The used simple spec-

tral clustering clearly does not work in this case. Further clustering with more advanced

algorithms might reveal what types of queries the log file contains. Most variance is

captured by the first principal component. However, two first principal components

do not contain most of the total cumulative variance. Even this kind of visualization
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Figure 6: Diffusion map of dataset B1, ε = 7.

facilitates the analysis of huge text files (N=21406).

Diffusion map finds anomalies from dataset B2. The first two coordinates capture

almost all of the difference between normal and anomalous queries (Figure 8). In addi-

tion, the clusters are very clearly separated and the normal traffic is easy to distinguish.

This dataset shows a clear difference between PCA and diffusion map results. The

anomalous cluster (N=173) contains the points on the far left and the anomalous points

near the normal cluster. Again, the normal cluster (N=21233) is very dense. The found

anomalies contain 88 real intrusions. The intrusions are related to injecting malicious

SQL queries or scripts into the HTTP query. Some non-intrusive queries are also in-

cluded, but they can be manually screened afterwards. The number of log lines is small

enough so that system administrator can inspect the anomalous lines and easily find the

intrusion attempts. Anomaly detection seems to find attacks from a large and varying

dataset. The anomalous traffic forms two distinct clusters, one of which contains the

intrusions. Diffusion map with a correctly selected ε helps in finding anomalies and

automatically detecting normal cluster. Larger values of ε make the diffusion map be-

have more like PCA. These approachees are more suitable for visual inspection and

multicluster analysis.

6 Conclusion
The goal of this study is to find security attacks from network data. The proposed

anomaly detection scheme could be used for query log analysis in real life situations.

We concentrate on web server log data, which contains text queries that are the focus of

our analysis. In these kinds of practical situations the boundary between normal traffic

and intrusions is not always very clear. However, the relative strangeness of the sample

could indicate how severe an alert is.
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The dimensionality reduction framework adapts to the log data. It assumes that only

few variables are needed to express the interesting information, and finds a coordinate

system that describes the global structure of the data. These coordinates could be used

for further analysis of characteristics of anomalous activities.

The main benefits of this framework include:

• The amount of log lines that needs to be inspected is reduced. This is useful for

system administrators trying to identify intrusions. The number of interesting

log lines is low compared to the total number of lines in the log file.

• The unsupervised nature and adaptiveness of the framework. The proposed

methods adapt to the structure of the data without training or previous knowl-

edge. This makes it suitable for exploration and analysis of data without prior

examples or attack signatures. This means that the framework also detects zero-

day attacks.

• It works on the application layer in the network. The attacks themselves must

in some way target the actual applications running on the computer. These logs

might be more available than pure low-level network packet data.

• Visualization of text log data. It is much easier to analyze the structure of traffic

using visualizations than it is to read raw textual log.

The data in question are rather sparse and the discriminating features are quite ev-

ident from the feature matrix. This is the merit of n-gram feature extraction which

creates a feature space that separates the normal behavior in a good manner. The

features describe the data clearly, and they are easy to process afterwards. Still, an

attacker might take advantage of the features used by the intrusion detection system. If

the n-gram frequencies of the attack query are similar enough to normal behavior, the

currently proposed system could not detect the attacks. Also, if most of the traffic in

a single log file consists of attack queries, they will be considered to be normal. This

might be a problem in rarely used services.

One advantage of the diffusion map methodology is that it has only one metapa-

rameter, ε . There exists estimation methods for finding the optimal value. If for some

reason the threshold sensitivity needs to be changed, ε gives the flexibility to adapt to

the global structure. However, the quality of the results is sensitive to changes of this

parameter. Values that are too small or large give non-desirable results.

The presented anomaly detection framework performs well on real data. Several

actual intrusions are detected. As an unsupervised algorithm this approach is well

suited for finding previously unknown intrusions. This method could be applied to

offline systems, as well as extended to a real-time intrusion detection system.

There are several points in this framework that could benefit from further research.

The feature extraction from the web log is currently done with n-grams. However,

this is only one method for it and other text-focused features might better describe

the dataset. Furthermore, the dimensionality reduction scheme could be developed to

adapt to this kind of data more efficiently, and the quality of the reduction could also be

evaluated. The classification method may be improved or changed altogether to another

algorithm. Finally, automated root cause detection would make the system more usable

in practice.
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[12] İzmirli, Ö. Tonal-atonal classification of music audio using diffusion maps. In

10th International Society for Music Information Retrieval Conference (ISMIR
2009) (2009).

16



[13] Keller, Y., Coifman, R., Lafon, S., and Zucker, S. Audio-visual group recognition
using diffusion maps. Signal Processing, IEEE Transactions on, 58(1):403–413

(2010).

[14] Turkka, J., Ristaniemi, T., David, G., and Averbuch, A. Anomaly detection frame-
work for tracing problems in radio networks. In Proc. to ICN 2011 (2011).

[15] Chernogorov, F., Turkka, J., Ristaniemi, T., and Averbuch, A. Detection of sleep-
ing cells in LTE networks using diffusion maps. In Vehicular Technology Confer-
ence (VTC Spring), 2011 IEEE 73rd, pp. 1–5. IEEE (2011).

[16] David, G. Anomaly Detection and Classification via Diffusion Processes in
Hyper-Networks. Ph.D. thesis, Tel-Aviv University (2009).

[17] Kruegel, C. and Vigna, G. Anomaly detection of web-based attacks. In Proceed-
ings of the 10th ACM conference on Computer and communications security, pp.

251–261. ACM (2003).

[18] Hubballi, N., Biswas, S., and Nandi, S. Layered higher order n-grams for hard-
ening payload based anomaly intrusion detection. In Availability, Reliability, and
Security, 2010. ARES’10 International Conference on, pp. 321–326. IEEE (2010).

[19] Ringberg, H., Soule, A., Rexford, J., and Diot, C. Sensitivity of PCA for traf-
fic anomaly detection. ACM SIGMETRICS Performance Evaluation Review,

35(1):109–120 (2007).

[20] Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., and Pepe, T. A novel
PCA-based network anomaly detection. In Communications (ICC), 2011 IEEE
International Conference on, pp. 1–5. IEEE (2011).

[21] David, G. and Averbuch, A. Hierarchical data organization, clustering and de-
noising via localized diffusion folders. Applied and Computational Harmonic
Analysis (2011).

[22] Damashek, M. Gauging similarity with n-grams: Language-independent catego-
rization of text. Science, 267(5199):843 (1995).

[23] Han, J. and Kamber, M. Data mining: concepts and techniques. Morgan Kauf-

mann (2006).

[24] Abdi, H. and Williams, L. Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4):433–459 (2010).

[25] Lee, J. and Verleysen, M. Nonlinear dimensionality reduction. Springer Verlag

(2007).

[26] Nadler, B., Lafon, S., Coifman, R., and Kevrekidis, I.G. Diffusion maps – a
probabilistic interpretation for spectral embedding and clustering algorithms. In

T.J. Barth, M. Griebel, D.E. Keyes, R.M. Nieminen, D. Roose, T. Schlick, A.N.

Gorban, B. Kégl, D.C. Wunsch, and A.Y. Zinovyev, editors, Principal Manifolds
for Data Visualization and Dimension Reduction, volume 58 of Lecture Notes in
Computational Science and Engineering, pp. 238–260. Springer Berlin Heidel-

berg (2008).

[27] Chung, F.R.K. Spectral Graph Theory, p. 2. AMS Press, Providence, R.I (1997).

17



[28] von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing,

17:395–416 (2007).

[29] Ng, A.Y., Jordan, M.I., and Weiss, Y. On spectral clustering: Analysis and an
algorithm. In Advances in Neural Information Processing Systems 14, pp. 849–

856. MIT Press (2001).

[30] Shi, J. and Malik, J. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888 –905 (2000).

[31] Kannan, R., Vempala, S., and Vetta, A. On clusterings: Good, bad and spectral.
J. ACM, 51:497–515 (2004).

[32] Meila, M. and Shi, J. Learning segmentation by random walks. In NIPS, pp.

873–879 (2000).

[33] Sipola, T., Juvonen, A., and Lehtonen, J. Anomaly detection from network logs
using diffusion maps. In L. Iliadis and C. Jayne, editors, Engineering Applications
of Neural Networks, volume 363 of IFIP Advances in Information and Commu-
nication Technology, pp. 172–181. Springer Boston (2011).

[34] Hein, M. and Audibert, J. Intrinsic dimensionality estimation of submanifolds in
R

d . In Proceedings of the 22nd international conference on Machine learning,

pp. 289–296. ACM (2005).

[35] Coifman, R., Shkolnisky, Y., Sigworth, F., and Singer, A. Graph Laplacian to-
mography from unknown random projections. Image Processing, IEEE Transac-
tions on, 17(10):1891–1899 (2008).

18



PIII

ADAPTIVE FRAMEWORK FOR NETWORK TRAFFIC
CLASSIFICATION USING DIMENSIONALITY REDUCTION

AND CLUSTERING

by

Antti Juvonen and Tuomo Sipola 2012

Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT), 2012 4th International Congress on, pp. 274–279, St. Petersburg,

Russia

Reproduced with kind permission of IEEE.



Adaptive Framework for Network Traffic Classification Using Dimensionality
Reduction and Clustering

Antti Juvonen, Tuomo Sipola

Department of Mathematical Information Technology
University of Jyväskylä
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Abstract—Information security has become a very important
topic especially during the last years. Web services are becom-
ing more complex and dynamic. This offers new possibilities
for attackers to exploit vulnerabilities by inputting malicious
queries or code. However, these attack attempts are often
recorded in server logs. Analyzing these logs could be a way
to detect intrusions either periodically or in real time. We
propose a framework that preprocesses and analyzes these log
files. HTTP queries are transformed to numerical matrices
using n-gram analysis. The dimensionality of these matrices
is reduced using principal component analysis and diffusion
map methodology. Abnormal log lines can then be analyzed in
more detail. We expand our previous work by elaborating the
cluster analysis after obtaining the low-dimensional represen-
tation. The framework was tested with actual server log data
collected from a large web service. Several previously unknown
intrusions were found. Proposed methods could be customized
to analyze any kind of log data. The system could be used as
a real-time anomaly detection system in any network where
sufficient data is available.

Keywords-intrusion detection; anomaly detection; n-grams;
diffusion map; k-means; data mining; machine learning

I. INTRODUCTION

Most web servers log their traffic. This log data is rarely

used, but it could be analyzed in order to find anomalies or

to visualize the traffic structure. Acquiring the data does not

require any modifications to the actual web service, because

data logging is usually done by default. Different kinds of

log files are created, but for this study the most interesting

log is the one containing HTTP queries.

One important application for network traffic analysis is

anomaly detection. This is done using intrusion detection
systems (IDS) [1]. Many of these analyze the transport layer,

mostly TCP packet data. However, we try to find anomalies

and other information from application layer log files. HTTP

queries include this information. Many attacks, such as SQL

injections, can be detected from this layer.

Log files are in textual form. Therefore, some prepro-

cessing is needed to transform query strings into numerical

matrices. This can be done using information about n-gram

analysis, which is described in section III-A. Calculating the

frequencies of individual substrings in the data results in a

numerical data matrix.

After preprocessing, many data mining methods can be

used to visualize and analyze the logs. We perform di-

mensionality reduction and clustering. After visualizing the

results it is possible to interpret the findings and make more

detailed analysis about the web service traffic.

We propose a framework that processes textual log files

in order to visualize them. We are trying to find patterns

and anomalies using only log files containing HTTP queries.

The framework is adaptive, and individual parts of it can

be changed. For example, the choice of dimensionality

reduction method or clustering algorithm can be done based

on current needs.

The proposed methods use data mining principles, and

they work as an IDS and network traffic visualization and

analysis tool. Using the framework, we are trying to find

whether the textual HTTP query logs actually include some

information about the traffic structure. This information

could then be used to classify users and individual queries

and to find anomalies and intrusion attempts.

II. RELATED WORK

We have previously researched log data preprocessing and

anomaly detection [2], [3]. This research focused on finding

intrusions from log data. We now extend this methodology

to further analyze and cluster the structure of the traffic. This

is done by adding more accurate clustering algorithms into

the framework.

Principal component analysis has been widely used in

network intrusion detection and traffic analysis. Xu et al.

used PCA and support vector machine to reduce dimensions

and classify network traffic in order to find intrusions [4].

Taylor et al. used PCA and clustering analysis to find

network anomalies and perform traffic screening [5].

Diffusion methods have been applied in network traffic

analysis. These studies have concentrated on low-level IP

packet features. These features are numerical and the net-

work architecture differs from our study [6] [7]. Network

server logs have also been analyzed using diffusion maps

and spectral clustering [2] [3].
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Figure 1. The data mining process

III. METHODOLOGY

Our overall approach is rooted in the data mining process

[8], [9]. This approach is method-centric as our research is

focused on the data processing and not business aspects. The

data mining process of our study flows as follows:

1) Data selection.

2) Extract n-gram features from the text data.

3) Normalize the feature matrix.

4) Reduce the number of dimensions to obtain low-

dimensional features.

5) Classify or cluster the low-dimensional data presenta-

tion.

6) Interpret the found patterns or anomalies.

The process is presented in figure 1.

A. Feature extraction

The log files are in text format. Therefore, it is necessary

to transform the log lines into numerical vectors which then

can be used in further mathematical analysis. We use n-gram

analysis to process log files into numerical matrices. It has

been used e.g. in judging similarity in text documents [10],

analyzing protein sequences [11] and detecting malicious

code [12].

N -grams are consecutive sequences of n characters [10].

Each log line corresponds to a feature vector containing the

frequencies of each individual n-gram found in the data. The

list of n-grams appearing in the data can be found using n-

character-wide sliding window moved along the string one

character at a time [10].

Let us consider the following example. Having two strings

containing the words anomaly and analysis, we can

construct the feature matrix in the following way:

an no om ma al ly na ys si is

1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1

In this study, 2-grams are used. However, it is possible

to use longer n-grams as well. This will of course results

in more dimensions in the matrix, because there are more

unique n-grams. The theoretical maximum number of in-

dividual 2-grams using ASCII-characters is 2562 = 65536,

but in practice this is usually not the case. This is due to the

fact that many characters are never actually used [10].

B. Normalization

Normalization ensures that the features of the input data

are in the same scale. We use logarithm for this purpose. To

avoid complex numbers, the input must be above zero. The

normalization function for a point xi in the dataset is

fn(xi) = log(xi − Xmin + 1),

where Xmin is the minimum of all the values in the

dataset.

C. Principal Component Analysis

Principal Component Analysis (PCA) [13] is perhaps the

best-known dimensionality reduction technique. It has many

practical applications, such as computer vision and image

compression [14].

The PCA process is explained in more detail in [14].

First we must substract the mean from the original data to

make the data have zero mean. Then the covariance matrix

must be calculated. From the covariance matrix we can then

calculate eigenvalues and the corresponding eigenvectors. If

we choose d eigenvectors that contain most of the variance,

we get a lower dimension representation of the original

data with d dimensions. This is done by choosing the

d eigenvectors as columns for a matrix, and multiplying

the mean-centered data with this matrix. For visualization

purposes it is necessary to choose either 2 or 3 dimensions,

ie. eigenvectors.

Calculating PCA is relatively simple, but it will only

work in linear cases. If the dataset is non-linear, some other

dimensionality reduction method must be used. PCA can

also give inaccurate results if there are outliers in the data.

D. Diffusion Map

Diffusion map (DM) reduces the dimensions while re-

taining the diffusion distances in the high-dimensional space

as Euclidean distances in the low-dimensional space. This

reduction is non-linear. The goal is to move from n-

dimensional space to a low-dimensional space with d di-

mensions, when d � n [15].

One measurement xi ∈ R
n in this study corresponds

to one line in the log file. Given the dataset X =
{x1, x2, x3, . . . xN} the affinity matrix W (xi, xj) =
exp

(−||xi−xj ||2
ε

)
describes the affinities between measure-

ments. Here we have used the Gaussian kernel. Matrix P =
W−1K represents the transition probabilities between the

measurements. Next, the matrix D collects the row sums to

its diagonal. Using the singular value decomposition (SVD)

of matrix P̃ = D− 1
2 WD− 1

2 we obtain the eigenvectors vk

and eigenvalues λk.



The diffusion map maps the measurements

xi to low dimensions by giving each high-

dimensional point coordinates in the low dimensions:

xi → [λ1v1(xi), λ2v2(xi) . . . λdvd(xi)]. These new

coordinates lose some of the information contained in the

original dataset. However, the accuracy is usually good

enough for later classification. Even though there is loss of

information, the classification problem becomes easier.

E. Traffic clustering using k-means algorithm

We use cluster analysis to divide network traffic into

meaningful groups. In this way we can capture the natural

structure of the data [16].

K-means algorithm was introduced in 1955 and huge

number of other clustering algorithms have been introduced

since then, but k-means method is still widely used [17].

It is a prototype-based clustering technique [16]. Given the

original data X = xi, where i = 1, .., n, the goal is to

cluster the data points into k clusters. The mean of cluster

k is now μk, and the mean squared error (MSE) between a

data point and the cluster mean is ||xi −μk||2. This leads to

an optimization problem where the MSE for each datapoint

in each cluster must be minimized.

The problem can be solved following these steps [18]:

1) Select initial centers for k clusters.

2) Assign each datapoint to its closest cluster centroid.

3) Compute the new cluster centers by calculating the

mean of the datapoints in each cluster.

Steps 2 and 3 are repeated until a stopping criterion is

met. Usually this means that the partitioning has not changed

since the last iteration, and thus a local optimum solution

for the problem has been found.

Choosing the number of clusters is not trivial, but there are

many methods for calculating the number of clusters, such

as Davies-Bouldin index, described in [19]. This algorithm

takes into account both scatter within a cluster and separation

between different clusters. Davies-Bouldin index is used in

this study to determine the number of clusters for each

resource.

The algorithm can give different results depending on the

initialization, because it only finds the local optimal solution.

This can happen especially when using random initialization.

However, this problem can be overcome by running k-means

multiple times and choosing the clustering results that gives

the smallest squared error [17]. There are also many other

algorithms for choosing the initial cluster centroids.

IV. EXPERIMENTAL SETUP

Figure 2 shows the architecture of the web service that

was analyzed. It contains many servers that offer the same

service to users using load balancing. Proprietary log files

were acquired from this service. These files then need to

be preprocessed into numerical matrices. The data and this

process are described in this section.
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Figure 2. Experiment architecture.

A. Data acquisition

The data have been collected from a large web service.

Apache web servers are used, and they log data using

Combined Log Format, example of a single log line:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]
"GET /resource.php?parameter1=value1
&parameter2=value2
HTTP/1.1"
200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0
(SymbianOS/9.2;...)"

For this analysis, the HTTP query part is used because

it contains the only information that a user can input. This

offers possibilities for attackers. The other information, such

as time, can be used when further analyzing individual

log lines (e.g. for finding anomalies or attacks). On the

other hand, HTTP query parameters and their values are

dynamic and changing, offering valuable information about

this dynamic web service. Analyzing this information will

explain a lot about the structure of the traffic. The parameter

values in data used in this study were dynamic and changing,

and also not always human-readable. Therefore, analyzing

these fields has to be done automatically with mathematical

methods.

B. Data preprocessing

The first step is to select the data for analysis. The original

log file contains approximately 4 million log lines. However,

most of these lines contain only static queries. Static lines

do not contain changing parameter values. These lines do

not offer a lot of information, because they are practically

identical in the used dataset. In addition, static lines do

not contain information about user input, meaning it is

not possible to detect attacks from those log lines alone.

On the other hand, dynamic web resources are changing

and also vulnerable, so dynamic lines containing parameters

and parameter values are interesting and can offer more

information about the web service. Therefore, static log lines

are filtered out, leaving only approximately 221 000 lines

to be inspected and clustered. This data selection reduces

the size considerably and creates a database of the most

interesting aspects of the log files.



After the first filtering stage, log files are divided into

smaller files according to resource URI. This is because

different resources accept different parameter values, so

they do not have much to do with each other. This makes

anomaly detection from full data very difficult and inac-

curate. However, traffic structure inside single resource is

more consistent. After this division, smaller logfiles can be

analyzed independently. It makes sense to further analyze

the largest log files, because some of the resources contain

only a few lines. These lines have to be omitted.

Finally, in order to create data matrices out of textual log

data, n-gram analysis is performed. This process is explained

in III-A.

V. RESULTS

For this research, 3 relatively large resources are selected

for further analysis and clustering. Resource 1 contains

10935 lines and 414 dimensions, and is the simplest in

terms of HTTP query parameters. Resource 2 contains only

2982 lines, but the number of dimensions is 3866, which

makes analysis challenging. Also, the parameters are clearly

not human-readable, i.e. it is impossible to say anything

about the queries by looking at the parameter string alone.

Resource 3 is the largest, including 21406 lines and 991

dimensions.

All the resources are analyzed using the proposed frame-

work. The feature data are normalized with the logarithm

function. PCA and diffusion map reduce the dimensionality

of the normalized feature matrices. Clustering then reveals

the structure of the data and facilitates the interpretation of

the log files.

Resource 1 contains 10935 lines and 414 dimensions. The

results for diffusion map and principal component analysis

are presented in figures 3 and 4, respectively. This resource

is a simple example, mainly useful in validating that the

methods do give satisfactory results. The only difference

is that DM separates the data points more clearly. Due to

this separation we get 3 clusters, instead of 2 as in PCA.

The biggest cluster contains varying parameter values. The

parameters in smaller clusters are almost the same within

that cluster. However, this behavior is easy to see directly

from the log lines. The framework visualizes the traffic well,

but in this case we do not obtain any new information about

the data.

Resource 2 is the smallest in this research, containing only

2982 requests. However, the number of dimensions is 3866.

This means that there are more dimensions than data points,

which is always a problem in classification tasks. Despite

that, we obtained clear results. The DM and PCA results

presented in figures 5 and 6. The results are essentially

identical, figures look slightly different but the clustering is

exactly the same. This might mean that variables are linearly

dependent, otherwise PCA would not work well. The log

lines themselves are not human-readable, containing error
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Figure 3. Resource 1, diffusion map.
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Figure 4. Resource 1, PCA.

tickets that have a seemingly random code as the parameter

value. However, as can be seen from the figures, there are

clearly two distinct clusters that can be seen using both

dimensionality reduction methods. This behavior was not

previously known and requires more detailed analysis with

the administrator of the web service.

Resource 3 is the largest with 21406 lines and 996

dimensions. It also shows that DM (in figure 7) and PCA (in

figure 8) can sometimes give very different results. Normal

parameter values in this resource are long and varied. This

results in PCA not being able to clearly distinguish any

clusters. For this reason, k-means clustering was not per-

formed for resource 3 PCA datapoints. However, with DM

the results are very meaningful. Normal traffic clearly forms

it’s own cluster, while 2 other groups are apparent. Cluster

2 with 5 datapoints does not contain anything malicious, but

is slightly different from other normal datapoints. The most

interesting finding in this data is cluster 3, which contains

4 lines. All of these lines contain an SQL injection attack,

where an attacker tried to include malicious SQL queries as

parameter values. The 2nd DM coordinate clearly separates

attacks from rest of the data, meaning that in this case only

one dimension is needed for anomaly detection.
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In all of the figures, except PCA for resource 3, it can

be seen that the separation of clusters is clear. A simple

clustering method such as spectral clustering or decision tree

could be used.

VI. CONCLUSION

We presented a framework for preprocessing, clustering

and visualizing web server log data. This framework was

used for anomaly detection, visualization and explorative

data analysis based only on application layer data. Individual

parts of the architecture can be changed for different results.

For example, k-means clustering can be replaced with hier-

archical linkage clustering method.

The results clearly indicate that there are traffic structures

that can be visualized from HTTP query information. The

data forms distinct clusters and contains anomalies as well.

The sensitivity for outliers creates some problems for PCA,

which means that it can be challenging to use it for anomaly

detection. Diffusion maps give good results, but more re-

search would have to be done to get more information about

performance issues. In some cases the results for PCA and

DM are nearly identical, while in other cases they differ

greatly. PCA is faster but cannot be used with non-linear
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data. DM seems to work in most situations but can be too

slow.

Traffic clustering can give new information about the

users of a web service. This information could be used to

categorize users more accurately. This gives opportunities

for more accurate advertising or offering better content for

users. Finding anomalies gives information about possible

intrusion attempts and other abnormalities.

To make the framework more usable, it should be auto-

matic and work in real-time. More research is needed to

find the most generally usable algorithms for each phase in

the architecture. In addition, log data tends to be high in

volume, so performance issues might become a problem.

For dimensionality reduction the number of dimensions is

not trivial. Also, the number of clusters must be determined

depending on the chosen clustering algorithm. Real-time

functioning requires changes in preprocessing and limits

the dimensionality reduction options. For this purpose, PCA

might be a good method, since projection of new points into

lower dimensions is simply a matter of matrix multiplication.

However, the limitations mentioned previously still apply.

Using data mining methods, underlying structure and

anomalies are found from HTTP logs and these results can

be visualized and analyzed to find patterns and anomalies.
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Abstract—Network security and intrusion detection are im-
portant in the modern world where communication happens
via information networks. Traditional signature-based intrusion
detection methods cannot find previously unknown attacks. On
the other hand, algorithms used for anomaly detection often
have black box qualities that are difficult to understand for
people who are not algorithm experts. Rule extraction methods
create interpretable rule sets that act as classifiers. They have
mostly been combined with already labeled data sets. This
paper aims to combine unsupervised anomaly detection with
rule extraction techniques to create an online anomaly detection
framework. Unsupervised anomaly detection uses diffusion maps
and clustering for labeling an unknown data set. Rule sets are
created using conjunctive rule extraction algorithm. This research
suggests that the combination of machine learning methods and
rule extraction is a feasible way to implement network intrusion
detection that is meaningful to network administrators.

Keywords—Intrusion detection, anomaly detection, n-gram, rule
extraction, diffusion map, data mining, machine learning.

I. INTRODUCTION

Web services and networks have become more and more
complex in the past years. This means that services and servers
face new threats and attacks. Intrusion detection systems (IDS)
are used to detect these attacks. An IDS works generally using
one of two detection principles, signature-based and anomaly-
based detection [1]. Signatures are predetermined attack rules
that can be used to trigger an alarm when a user’s behavior
matches the signature. Previous information about intrusions
is required for creating these rules. This leads to a low rate of
false alarms, but new and unknown threats cannot be detected.
On the other hand, anomaly-based detection systems try to
detect traffic that deviates from the normal behavior. New
attacks can be detected but this methodology will also lead
to some false alarms. Both principles can also be combined
to a so-called hybrid intrusion detection system [2]. Figure
1 shows a simplified block diagram of the different intrusion
detection approaches, demonstrating how our system relates to
other approaches.

Information security reseachers have been interested in
intrusion detection systems extensively, and surveys describing
advances in the field have been published [3], [4]. Many
machine learning methods, such as self-organizing maps [5]
and support vector machines [6] have been used to cluster data
and detect anomalies in these systems. Various hybrid systems
combining signature and anomaly-based detection have been
used [2], [7]. A two-stage adaptive hybrid system for IP

Known attacks
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Training data
Learning rules using

anomaly detection

Anomaly-based intrusion detection system

Rule extraction framework

Rule matching
Rule-based

detection

Network log Signature matching Known attack alerts

Training data Traffic profiling

Network log Anomaly detection Anomaly alerts

Network log

Fig. 1. Different IDS principles.

level intrusion detection has also been recently devised. A
probabilistic classifier detects anomalies and a hidden Markov
model narrows down attacker addresses [8]. Recently genetic
algorithms have been widely used in anomaly detection and
misuse detection [9], [10]. Artificial immune systems have
raised the interest of intrusion detection researchers [11]. More
traditional methods such as k nearest neighbors are also still
researched because they can be combined with other methods,
for example Dempster-Shafer theory of evidence [12]. A
distributed environment has been proposed where intelligent
agents analyze the network connections using data mining with
association rule mining [13]. Moreover, in our previous work
we have researched intrusion detection using dimensionality
reduction and clustering to find anomalies from network traffic
[14], [15].

The problem with deploying anomaly detection systems
in the commercial sector is that some algorithms, such as
neural networks, work like a black box [16]. The systems are
automated and it is difficult to know exactly how the decisions
are made. To overcome this problem, rule extraction methods
have been proposed [17]. These rules can be directly applied to
the original data for efficient web traffic filtering. In addition,
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this symbolic knowledge can be read and inspected by humans.
This can lead to a better understanding of the data and will
aid user acceptance especially in real-life company networks.

One way of extracting these rules is taking a decomposi-
tional approach [18]. This can be achieved, e.g., by decompos-
ing a neural network architecture. However, methods of this
type are algorithm dependent and the rules themselves may not
be sufficiently comprehensible [16]. Another way to extract
rules is by using pedagogical approach [17]. This approach
takes only the input data and output results into account.
Therefore, it is not specific to any particular classification
method. Any suitable algorithm can be used to find anomalies
or cluster data. Also, the produced rules are directly related to
original data and can therefore be easily understood. Because
of these reasons, we take the pedagogical approach in our
system. Various methods have been used to create different
kinds of rule sets and trees. Recent research seems to focus on
methods based on heuristic algorithms or creating intelligent
wrapper methods [19]. A less researched option is to use
conjunctive rules [17]. These rule extraction methods should
not be confused with association rule mining [20].

We propose a framework for detecting network anomalies
and extracting rules from a data set. Figure 1 shows how it
differs from other common approaches. This framework is a
supplementary module for signature-based intrusion detection
systems, such as next generation firewalls. In this approach,
network logs or other similar data is collected and preprocessed
to extract features and form numerical matrices to be analyzed
further. The dimensionality of this data is reduced for more
efficient clustering. After clustering the data to normal and
anomalous traffic, the obtained clustering is used to create
labels for the data. Subsequently, this information is used to
create a rule set for the high-dimensional features. This rule
set can then be used to classify traffic and detect intrusions
in real time. The proposed framework enables rule creation
in an unsupervised manner for previously unknown data. Our
contribution is combining unsupervised data analysis with rule
extraction techniques to create an online anomaly detection
system.

II. METHODOLOGY

The proposed framework uses training data to create a rule
set which can then be used to classify testing data or actual
network traffic data. Thus, our approach is divided into two
phases: rule set learning and traffic classification. The first
phase takes the approach of learning the clustering of the
data using dimensionality reduction and creating conjunctive
rules to describe these clusters in the initial feature space.
These rules will then be used to classify new incoming traffic
in the second phase. This process is described in Figure 2,
which shows the needed input data sets, produced rule set and
classification results.

The rule set learning phase aims to find rules that describe
the training data. This is done by clustering and labeling the
training data set. The resulting rule set classifies data according
to the obtained clustering. Architecture of the rule set learning
process is shown in Figure 3, which shows the labeling and rule
extraction phases in more detail. The methods in individual
modules are not fixed, meaning that the specific methods
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Fig. 2. Block diagram of the overall process.
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can be changed if better alternatives are found. The rule set
learning phase consists of the following steps:

• Feature extraction from training data

• Unsupervised labeling

◦ Dimensionality reduction
◦ Clustering

• Rule extraction

In the traffic classification phase new incoming traffic
is preprocessed and classified using the generated rule set.
Because of the conjunctive nature of the rules simple matching
is sufficient. This phase validates how well the rules apply to
data that was not part of the training data set. The steps are
as follows:

• Feature extraction from testing data

• Classification by rule matching

The following subsections describe the methods used in
previously mentioned phases in detail.

A. Feature extraction

Network log files consist of text lines that need to be con-
verted to numeric feature vectors. An n-gram is a consecutive
sequence of n characters that represents extracted semantic



information [21]. Our study uses 2-gram features generated
from the network logs. This approach produces a rather sparse
feature matrix [14]. The rule extraction algorithm works with
symbolic conjunctive rules. This means that only nominal and
binarized data can be used. Converting data to this kind of
format ensures that the feature matrix may be used with the
overall learning pipeline.

The feature matrix consists of binary values representing
whether an n-gram is present in a specific log line or not.
Let us consider the following example. Having two strings
containing the words anomaly and analysis, we can
construct the feature matrix in the following way:

an no om ma al ly na ys si is
1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1

In this study, 2-grams are used. However, it is possible
to use longer n-grams as well. This will result in more
dimensions in the matrix, because there will be more unique
n-grams, slowing down the process. For the purposes of this
research, 2-grams contained enough information for separating
normal and anomalous traffic. Also, using n = 1 will give
the character distribution. Single characters may not contain
enough semantic information, and therefore higher values of
n are often used.

B. Dimensionality reduction and clustering

Clustering high-dimensional data is facilitated by dimen-
sionality reduction. We employ diffusion map training to iden-
tify the attacks in the training data set. The features describing
the dataset are numerous and sometimes hard to interpret
together. Therefore, a dimensionality reduction approach using
diffusion map is taken. Diffusion map training produces a
low-dimensional model of the data, which reveals the internal
structure of the dataset and facilitates anomaly detection. In
addition, it can cope with non-linear dependencies in the
data. Diffusion map retains the diffusion distance in the initial
feature space as the Euclidean distance in the low-dimensional
space [22], [23], [24].

One log line is represented by feature vector xi ∈ R
n. The

whole data set is X = {x1, x2, x3, . . . xN}, from which the
affinity matrix

W (xi, xj) = exp
(−||xi − xj ||2

ε

)

can be calculated. As seen, the Gaussian kernel is used for
the distance matrix and the bandwith parameter ε is selected
from the optimal region in the weight matrix sum [25]. D,
which collects W ’s row sums on its diagonal, and the transition
matrix P = D−1W form the symmetric matrix

P̃ = D
1
2 PD− 1

2 = D− 1
2 WD− 1

2 .

The singular value decomposition (SVD) of P̃ yields the
eigenvectors vk and eigenvalues λk. Now, the low-dimensional
coordinates corresponding each original log line are found:

xi → [λ1v1(xi), λ2v2(xi) . . . λdvd(xi)]. Most of the infor-
mation is retained in the first eigenvectors and less meaningful
ones are left out. Some information is lost because not all
eigenvectors are used, but lower dimensionality makes clus-
tering easier.

The k-means method is used to group the data points into
clusters. This method is simple and well-known clustering
algorithm and it has been used in various data mining tasks.
The algorithm description and examples of use can be found in
literature [26], [27], [28]. The k-means method relies heavily
on the parameter k which determines the number of clusters.
Silhouette expresses the quality of clustering for each data
point. The optimal number of clusters for the k-means is
determined using average silhouette value [29]. An alternative
clustering method could be used.

The obtained clustering is believed to describe behavior
of the data. If the high-dimensional features can differentiate
normal and intrusive behavior, this should be apparent from
the resulting low-dimensional clusters. The actual nature of
the clusters should be confirmed with domain area experts.

If performance becomes an issue with larger data sets,
the learning process could be expanded with out-of-sample
extension. However, representative selection of training data
is usually a more challenging problem.

C. Rule extraction

A rule is a way to determine the class of a data point
based on certain conditions. Ideally a rule would be easily
interpretable by a network administrator. All the possible rules
span such a huge space that it is not feasible to go through all
of them. This means that a sub-optimal but efficient method
needs to be used. Such systems have been applied with neural
networks [17], [16] and support vector machines [30], [31],
[32].

Conjunctive rule is a logical expression containing truth
values about the inclusion of binary features. These rules tell
whether a symbol should be included, excluded or if it does not
matter. Let us assume that we have binary features a, b, c, d, e.
Thus, the feature matrix contains five columns corresponding
to each binary feature. For the sake of example we have a rule
set containing three rules:

r1 =¬a for class c1,

r2 =a ∧ b ∧ c ∧ ¬d ∧ e for class c1,

r3 =a ∧ b ∧ ¬c for class c2.

The rule set for class c1 would be expressed in logical form
as R1 = r1 ∨ r2. In practice, there are usually multiple rules
for each class. Note that in rule r1, values of features b, c, d
and e do not matter. Similarly, for r3 values of d and e can
be anything.

For implementation purposes, the rules are expressed as
vectors. The length of these vectors is equivalent to the number
of features. The logical truth values are converted to 1 and
−1. The values that do not matter are expressed as 0. In the
previous example, the rules would be vectors of length 5. Rule
r1 is expressed as a vector (−1 0 0 0 0). It is easy to
match feature vectors to this kind of rule vectors. Note that in



this research a rule symbol corresponds to an n-gram feature
as described in II-A.

The conjunctive rule extraction algorithm [17] finds rule-
based classifier that approximates the clustering obtained in
the unsupervised labeling step. Conjunctive rule extraction is
presented in Algorithm II.1. Note that a rule r consists of
symbols r = s1 ∧ s2 ∧ s3 ∧ . . . ∧ sn.

Algorithm II.1: Conjunctive rule extraction.

Input: data points E, classes C
Output: rules Rc that cover E with classification C

repeat
e := get new training observation from E
c := get the classification of e from C
if e not covered by the rules Rc then

r := use e as basis for new rule r
for all symbols si in r do

r′ = r with symbol si dropped
if all instances covered by r are of the same class
as e then

r := r′
end if

end for
add rule r to the rule set Rc

end if
until all training data analyzed

The obtained rules separate the training data into the
clusters. These rules can now be matched to new incoming data
points. Their performance depends on how well the training
data covers the behavior of the data. If the point matches one
of the rules, the exact type of the abnormal or normal state
can be interpreted. If a data point does not fall under any of
the rules, then it can be considered abnormal.

Created rules are valid for the classification task while
the essential profile of the data remains the same. This is
often not the case for extended periods of time, especially
for network traffic or similar data. Therefore, rules can be
recreated periodically, e.g., daily.

III. RESULTS

This section contains the classification results using real-
world network log data. The goal is to perform preliminary val-
idation on real data to test the feasibility of rule extraction in a
practical IDS application. The previously described framework
was implemented and applied to this data. Data acquisition and
analysis are presented below. These results illustrate that the
rule set learning phase works on a data that comes from a
real-world source.

A. Data acquisition and processing

We use the same network log database that has been used
in our previous related research [15]. The data comes from
a real-life web server used by a company. Different kinds of
intrusion attempts and other abnormal log lines are included in
the data. We examine two log files that correspond to different
resource URIs. The servers are using Apache server software,

which logs network traffic using Combined Log Format. A
single log line contains information about the HTTP query:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]
"GET /resource.php?parameter1=value1
&parameter2=value2
HTTP/1.1"
200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0
(SymbianOS/9.2;...)"

The HTTP GET request part of the log line might contain
information about SQL injections and other kinds of attacks.
This request part is preprocessed using the methods described
in Section II-A. Consequently, we get a binary matrix rep-
resenting whether an n-gram is present in a specific log
line or not. The resulting data points are then clustered into
normal and anomalous clusters as described in Section II-B.
Because the data set is unlabeled, the unsupervised labeling is
performed for the whole data set. This is information is used
for test result validation as shown in Figure 3.

B. Data analysis

The first data set for initial testing contains 4292 log lines.
After preprocessing we find that there are 490 unique 2-grams
in the data, resulting in 4292× 490 sized feature matrix. Each
datapoint now has a label (normal or anomalous) based on the
clustering results. This information can be used to extract the
rules. We select randomly 2000 data points for rule creation.
The whole data set contains 2292 log lines that are not present
during rule set learning phase. These remaining lines are our
testing data set.

First, we discover that the used algorithm creates 6 rules,
2 for the normal traffic cluster and 4 for the anomalous one.
After testing the rules with the whole dataset, all the data
points except one match the correct rules. One anomalous data
point is not covered by any rule. All of the normal traffic data
points match one of the rules. In this case the system works
with almost 100% accuracy, which means that the training data
represents the testing data well enough.

The second data set contains 10935 log lines. In this data,
414 unique n-grams are found, resulting in a matrix of size
10935 × 414. After dimensionality reduction, the number of
clusters k is determined using the average silhouette value, as
described in Section II-B. Figure 4 shows that the data seems
to form 4 clusters that are found using k-means algorithm. For
rule set learning phase, 8000 data points are used. Other 2935
are used for traffic classification testing. Figure 5 shows all of
the data points after dimensionality reduction and clustering
used for unsupervised labeling step. As we can see from this
visualization, cluster c4 contains clearly more points than the
others.

Rule extraction from the training set produces 15 rules
describing 3 of the classes. One class is not featured in
the training data and therefore no rules were generated for
this class. The testing data set does not contain any samples
belonging to class c1. Out of the 493 data points of class c3,
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Fig. 5. Two-dimensional visualization of diffusion map of the whole data
set.

the extracted rules successfully identify 349 (71%). Test data
set contains 2742 data points of class c4, out of which 1990
are found using the rules (73%). The reason these percentage
figures are so low is that the training data differs from the
testing data too much. However, the conjunctive rule extraction
algorithm always covers the whole training data with 100%
identification rate.

IV. CONCLUSION

Using modern data mining technology in network security
context can become problematic when facing end-user needs.
Even if the technology produces tangible results, the user
rarely has understanding of the methodology. Therefore, this
so-called black box system is not a desirable end goal. Simple
conjunctive rules are easier to understand, and rule extraction
from the complex data mining techniques might facilitate user
acceptance. In this research, we have combined rule extraction
methodology with diffusion map training framework in order
to produce a rule-based network security system.

The main benefit of this framework is that the final output

is a set of rules. No black box implementation is needed
as the end result is a simple and easy to understand rule
matching system. The training data may contain intrusions and
anomalies, provided that the clustering step can differentiate
them. In addition, rule matching is a fast operation compared
to more complex algorithms.

The experimental data sets in this study are suitable for
rule generation. The number of created rules is not too high
for practical purposes and the accuracy with the first data set
is high enough. Data points that do not match any rule could
still be flagged as an anomaly in a practical intrusion detection
system. The most important thing is to recognize normal
traffic accurately. However, if new data points introduced after
rule generation are very different from the training data set,
the accuracy of classification using the rules might suffer
considerably. Periodical rule updating will solve this issue.
The second test data set demonstrates how important it is to
have a training set that corresponds to the real situation as
accurately as possible. If some types of data points are not
featured in the rule generation phase, corresponding rules are
not generated and these points will not be classified correctly.
With proper training data the generated rules give much better
accuracy. The created clustering may not represent reality
but it is convenient while actual data labels are unknown.
Another concern is overfitting of the rules, but the rules can
be generalized to mitigate this problem.

The proposed framework is useful in situations where high-
dimensional data sets need to be used as a basis for anomaly
detection and quick classification. Such data sets are common
nowadays in research environments as well as in industry,
because collecting data is wide-spread. Our example case has
been network security, which bears real benefits to anyone
using modern communication networks. The provided tools are
useful for network administrators who are trying to understand
anomalous behavior in their networks.

Future topics include dynamic rule update as systems
evolve, rule set optimization and using the rule set to filter
real-time data sets. The modular structure of the framework
enables these additions to be implemented conveniently. The
applicability of the system to a wider network security context
should also be tested, meaning cooperation with other security
systems and components such as next-generation firewalls and
other signature-based systems.
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Abstract

We apply the knowledge discovery process to the mapping of current topics in a

particular field of science. We are interested in how articles form clusters and what

are the contents of the found clusters. A framework involving web scraping, keyword

extraction, dimensionality reduction and clustering using the diffusion map algorithm is

presented. We use publicly available information about articles in high-impact journals.

The method should be of use to practitioners or scientists who want to overview recent

research in a field of science. As a case study, we map the topics in data mining

literature in the year 2011.

Keywords: knowledge discovery process, literature mapping, data mining, clustering,

diffusion map

1. Introduction

A task that researchers in any field of science face is to gain an understanding of

what others are doing on the field and how it is currently developing. This is a neces-

sary step when relating the researcher’s own work to the bigger picture. The research

presented here originates from our interest to answer the following basic questions:

1. What main topics are discussed in current data mining research literature?

2. What are the most frequently mentioned methods in the literature?

3. Which journals publish the different topics within the field of data mining?

Very soon we found out that data mining is a rapidly expanding branch of science with

a large number of articles published about it each year. Therefore, gaining a general

view about the publication space turns out to be, in practice, quite challenging.

A rigorous way to create a secondary study would be to perform a systematic litera-

ture review. Originating from medical sciences, systematic reviews can be used also in

other disciplines, exemplified by the adaptation to software engineering by Kitchenham
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(2004). A systematic literature review creates a synthesis about a specific phenomenon

by conglomerating the evidence published in primary research papers. There is also a

lighter version of systematic literature review called mapping study, or scoping review,

that intends to identify groups of current literature and identify gaps for further, more

detailed, literature review (Budgen et al., 2008). Mapping study, even if lighter than a

systematic review, is still a laborious task to do for a massive body of literature.

As data mining methodologies facilitate the handling of huge data masses, it would

seem natural to use them to summarize the research literature itself. After all, a defi-

nition of data mining, according to Hand et al. (2001, p. 1), is “the analysis of (often
large) observational data sets to find unsuspected relationships and to summarize the
data in novel ways that are both understandable and useful to the data owner.” As

it turns out, others have followed a similar way of thinking and studied the creation

of automated tools for literature surveys. For example, Cohen et al. (2006), and later

Matwin et al. (2010), use machine learning algorithms to assess the relevance of articles

in order to reduce the workload of experts who maintain systematic reviews common

in evidence-based medicine.

Our goal greatly resembles those pursued by researchers in the field of sciento-

metrics, which is commonly defined as the quantitative study of science. Ivancheva

(2008) provides a categorization of scientometrics methodology for research subjects,

information types and method classes. Our research subject can be seen as science
by itself because we try to understand the structure of a field of science. The field is

limited, focused and concrete, so the information type of this research is operational.
Finally, in the classification of Glänzel (2003) our work positions itself in structural
scientometrics trying to map the research area.

Classical methods used in science mapping, for example in planning of research

policies or finding out structures in scientific communities, include those of co-citation

analysis (Small, 1973) and co-word analysis (Callon et al., 1983). Co-citation analysis

looks for structure in research literature by analyzing the frequency that an article is

cited together with another one in later works. Co-word analysis is based on the idea

that the text in scientific publications connects key concepts to each other. In co-word

analysis, connections between the concepts emerge from the network of co-occuring

words instead of the network of citations made between authors.

For the goal of mapping literature, metadata could be used instead of the full re-

search papers. Metadata is usually more readily available and, additionally, it should

contain less noise because it is very focused in content and limited in form. There

are existing metadata and article databases for certain fields of science. Some of the

more notable examples are CiteSeerX1, DBLP2, arXiv3 and PubMed4. CiteSeerX is an

online database that collects article metadata focusing primarily on the computer and

information sciences. DBLP is a database for computer science focusing on authors.

ArXiv covers mathematics, computer science, nonlinear sciences, quantitative biology

1http://citeseerx.ist.psu.edu/
2http://www.informatik.uni-trier.de/~ley/db/
3http://arxiv.org/
4http://www.ncbi.nlm.nih.gov/pubmed/
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and statistics. PubMed archives biomedical literature citations. There are also exist-

ing software frameworks to collect information about scientific articles, for example

that of CiteSeerX (Teregowda et al., 2010), using web spider technology and various

heuristics to collect metadata and citations. The original article databases, and the

metadata repositories, can be accessed via web browser interfaces and in some cases

also machine-readable interfaces such as the OAI protocol5. A major interdisciplinary

database with a significant role in the development of scientometrics is the Thomson

Reuters (formerly known as ISI) Web of Knowledge (WoK)6.

To utilize these databases efficiently, computational methods are required. Current

work about literature database analysis seems to focus on analyzing citations. One

example of such a system is CiteSpace that finds trends and patterns in scientific litera-

ture. It was tested with mass-extinction research and terrorism research (Chen, 2006).

There have also been schemes for recommending research papers using citation data

with subspace clustering based analysis (Agarwal et al., 2005).

Journal interdisciplinarity has been studied with citation reports by clustering using

bi-connected graphs (Leydesdorff, 2004). Leydesdorff & Rafols (2009) used factor

analysis to cluster the ISI subject categories. Later, these results were replicated for

the revised list of categories (Leydesdorff et al., 2013). The methods can be used to

produce global maps of sciences, which are two-dimensional illustrations of global

literature, in which subsets such as the publications of researchers or companies can be

positioned and compared with each other (Rafols et al., 2010).

Tseng & Tsay (2013) present a data processing pipeline that identifies subfields of

science. With Dice coefficient similarity and multi-stage clustering, they cluster jour-

nals. They believe that articles form topics or categories which in turn form subfields.

The research uses manual cluster labeling, but the task is assisted with text mining. The

results include subfield descriptions and visualizations of topical maps.

Crimmins et al. (1999) use their framework to discover information from the In-

ternet. They collect frequently occurring phrases, citation and metainformation, sum-

marizing the results into a contingency table. The framework provides clustering and

principal component analysis capabilities. Clustering and visualization produce maps

that facilitate the understanding of the searched information. This kind of approach

seems reasonable also in the context of scientific articles, because there is a similar

graph-like structure.

As further examples, clustering frameworks for more traditional text mining have

been used to analyze large text databases. Bravo-Alcobendas & Sorzano (2009) clus-

tered biomedical papers using non-negative matrix factorization and k-means algo-

rithms. Aljaber et al. (2010) used various clustering methods to examine literature

concerning high energy physics and genomics. Their datasets are from knowledge dis-

covery competitions and workshop tasks7. They show that the combination of citation

information and extracted features from full article text produces an efficient way to

capture the content of scientific papers.

5http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm
6http://wokinfo.com/
7KDD Cup 2003, TREC 2006 and 2007 Genomics Tracks
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We view computer-assisted literature mapping as a special case of the process of

knowledge discovery in databases, as described by Fayyad et al. (1996a,b), and we

shall continue using terminology related to their description, which is presented in

Figure 1. The steps from raw data to the goal (knowledge to be discovered) involve

selection, preprocessing, transformation and mining of the data, as well as representing

and interpreting the discovered patterns. The goal in our case is not so much to aid in

matters of policy, but to help a researcher gain an initial understanding of what others

are currently doing in the same research field. Therefore, we are interested in applying

data mining to the concepts (keywords) being discussed in the literature rather than the

authors and their affiliations. The electronic articles that reside in databases owned by

journal publishers form the bulk of raw data. Consequently, we want keyword vectors

to be the transformed data.

Figure 1: Steps of the knowledge discovery process after Fayyad et al. (1996a).

The technical data mining steps used by Szczuka et al. (2012) in their document

grouping and concept identification system are similar to those used in our approach.

However, we build upon the clustering approach by using a diffusion map dimension-

ality reduction step. In addition, our case study analyzes a somewhat larger number

of articles. These articles are a subset of scientific literature, and are selected using a

specified procedure. Our features are based on the publicly available metadata, while

Szczuka et al. use the whole text of the articles, which is feasible when they are easily

available.

In this paper, we propose a knowledge discovery and data mining method to create

a global view of current topics in a particular field of science using publicly available

information about publications in high-impact journals. We compare recent articles

using their keywords and title words using a diffusion map data mining approach. The

purpose is to find the current snapshot state and structure of the research field based on

the data. Maps of science are mostly built upon citation information, but the interests

of this article lie in the content of the articles, not connections of citations. In Section 2

we describe the details of our approach, and adapt it to our case study in Section 3.

Section 4 presents and discusses the results regarding the data mining literature case

study. Section 5 provides a summary of this research.

2. Methodology

We present a clustering framework, which is designed to be useful when searching

for a general overview of topics covered in a body of text documents. The major steps
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in our metadata-based clustering framework follow the adapted knowledge discovery

process (Fayyad et al., 1996a,b). The adapted steps include:

1. Selection of relevant literature.

2. Dataset formation (preprocessing and transformation).

3. Data mining the article set with dimensionality reduction and clustering.

4. Interpretation of the summaries obtained from the previous step.

Later on, in Section 3, we present our procedure using data mining literature as an

example. However, the steps are in no way limited to any specific field of research that

one might want to study.

2.1. Selection of relevant literature

The first step of the process, i.e., selection of the relevant research literature, is

important because it defines the publication space. These steps could be automated

but at least some initial query from the user must restrict the search. We suggest the

following general steps:

1. Identify journals that are likely to be relevant to the field of interest.

2. Focus on the most relevant journals within the identified ones.

3. Decide on further restrictions, e.g., dates of publication.

How this selection is done depends on the research goals. Subsequently, in Section

3, we make suggestions that are based on our experiences and could be used when the

goal is similar.

2.2. Article dataset formation

After selecting the body of literature to be studied, metadata needs to be gathered

and preprocessed. The main steps, which should mostly be automated, include the

following:

1. Gathering data.

2. Normalization of data.

3. Feature extraction.

4. Construction of feature matrix.

Gathering data may be done in various ways, e.g., web scraping, accessing public

databases or using public APIs. Data normalization consists of unifying notational con-

ventions and spelling. Feature extraction gathers numerical features from the available

textual information. As a final step, a feature matrix is constructed for data mining.

The dimensions of this matrix are narticles × nfeatures.

2.3. Data mining

In what follows we describe our data mining and analysis steps consisting of article

clustering, keyword frequency counting and computation of journal distribution within

clusters.
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2.3.1. Article clustering
After preprocessing and matrix formation, the data is clustered in order to look

for the most dominating groups of topics. The overall procedure of article clustering

consists of two steps:

1. Dimensionality reduction using diffusion map.

2. Clustering using agglomerative method with Ward distance.

The first step produces an eigenvector presentation of the transition matrix of the data.

This presentation reduces noise in the data, makes the clustering easier and enables

visualization. The second step is a simple clustering task.

The binary matrix obtained from data formation step can be of high dimension-

ality, for example in the order of thousands. In bibliometrics and scientometrics this

problem is commonly solved with a combination of hierarchical clustering and multidi-

mensional scaling (MDS) for dimensionality reduction (Boyack et al., 2005; Waltman

et al., 2010). Our approach is fundamentally the same, but instead of MDS we employ

the diffusion map algorithm (Coifman & Lafon, 2006). It finds a low-dimensional rep-

resentation using the singular value decomposition of a transition probability matrix

based on some chosen distance function. Thus, the high-dimensional data points be-

come embedded in a lower-dimensional space. The dimensionality reduction yields a

space where the Euclidean distance corresponds to the diffusion distance in the original

space (Coifman & Lafon, 2006; Nadler et al., 2008).

Let us consider a dataset X = {x1, x2, . . . , xn} , xi ∈ {0, 1}p, that consists of vectors

of binary digits, where n is the number of data points and p is the number of measured

features. The initial step of the diffusion map algorithm calculates the affinity kernel

matrix W, which has data vector distances as its elements:

Wi j = exp

(
−dist(xi, x j)

ε

)
,

where dist(xi, x j) is the similarity measure of Jaccard (1901). Our algorithm uses

this for the initial distance matrix between the articles, because only the non-zero ele-

ments should contribute to the distance metric. A kernel is used in order to bring close

points closer and to increase the distance to distant points.

The row sum diagonal matrix Dii =
∑n

j=1 Wi j, i ∈ 1 . . . n is used to normalize the W
matrix: P = D−1W. This matrix represents the transition probabilities between the data

points. The conjugate matrix P̃ = D
1
2 PD−

1
2 is created in order to find the eigenvalues

of P. With substitution we get

P̃ = D−
1
2 WD−

1
2 .

This normalized graph Laplacian (Chung, 1997) preserves the eigenvalues (Nadler

et al., 2008). Singular value decomposition (SVD) P̃ = UΛU∗ finds the eigenvalues

Λ = diag([λ1, λ2, . . . , λn]) and eigenvectors U = [u1, u2, . . . , un] for P̃. The eigenvalues

for P are the same as for P̃. The eigenvectors for P are found with V = D−
1
2 U (Nadler

et al., 2008). The low-dimensional coordinates Ψ are created using Ψ = VΛ. Only a

few of these coordinates are needed to represent the data to a certain degree of error

(Coifman & Lafon, 2006).
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Basically, the row-stochastic Markov matrix P corresponds to modes of a random

walk on the data. It should be noted that the eigen-analysis is based on the distance

matrix rather than the data matrix. The use of the kernel brings the neighborhood

closer to the point. Points that are close to each other on the graph are also close in the

embedded space. Diffusion map has a fundamental difference to principal component

analysis (PCA) and multi-dimensional scaling (MDS) there: it also reveals nonlinear

relationships between features in embedded space. Linear projections (PCA and MDS)

cannot show these.

Diffusion map facilitates the clustering by simplifying the representation of data.

Therefore, simple clustering methods can be used to find relevant structure of the data.

For clustering the articles using the low-dimensional coordinates, we apply agglomer-

ative clustering using the Ward method for cluster distances. The agglomerative hier-

archical clustering scheme is discussed in Everitt et al. (2001, ch. 4) and Hastie et al.

(2011, p. 523). The number of clusters is determined using the silhouette measure;

the number yielding the highest average silhouette for a clustering is chosen, as recom-

mended by Rousseeuw (1987). When compared to the brief overview by Waltman et al.

(2010) our combination of diffusion map dimensional reduction and clustering seems

to be unique in the field of science mapping, although it is previously shown to be

both theoretically sound and applicable to many real-world tasks, including document

clustering (Lafon & Lee, 2006).

The clustering usually has a dense center forming one cluster and a few sparser

clusters that stand out. For this reason, the clustering was repeated using only the

remaining center, which we call the residual cluster. We end up with an overall iterative

data clustering method that includes the following steps:

1. Dimensionality reduction using diffusion maps.

2. Agglomerative clustering with optimal silhouette.

3. Take small clusters as results, and remove them from further analysis.

4. Continue from step 1 using the big residual cluster until stopping criterion is met.

2.3.2. Keyword frequency and journal distributions
Simple keyword analysis helps to identify the topics that have been discussed the

most in the examined set of articles. The number of how many articles include each

keyword is counted. A simple sum over all the articles yields overall keyword fre-

quencies. In our case study, the purpose of this step was to find out the most common

methods and applications in current literature.

As yet another additional piece of information, we compute the distribution of jour-

nals in the clusters. Each article in a cluster belongs to a single journal and it is easy to

create a frequency table. This table supports the knowledge discovery task by showing

the relations between the generated clusters and the journals.

2.4. Interpretation
The data mining analysis step produces summaries of the data which need to be

interpreted by the user. They can be presented in the form of visualizations, tables

and lists. The evaluation of the results depends on the initial search goals. It is up to

7



the user to decide whether the obtained clustering, structural visualization and found

categories are sensible. We do this verification by comparing the results with published

expert opinions.

2.5. Comparison with other scientometric methods

A short comparison with other analysis methods is provided, because the reader

might not be familiar with our approach.

Traditional co-word analysis compares word pairs found in literature. The pairs are

created from the body of literature and the co-occurrence frequencies are collected to a

matrix (Callon et al., 1983). These words and their relations are believed to define con-

cepts in the scientific field. The concepts can be connected and clustered using graph

algorithms. However, the approach described in our research clusters articles, not word

pair concepts. We measure the distances between articles using keywords. Naturally,

word co-occurrence plays a part also in our method via the chosen Jaccard distance

metric and the diffusion process modelled by the dimension reduction algorithm.

OpenOrd is a highly scalable citation graph based method for science mapping (for-

merly known as as VxOrd or DrL), used by Boyack et al. (2005). OpenOrd uses state

of the art graph algorithms to produce (x, y) -coordinates and pruned edge distances for

the articles being examined. Standard clustering methods, such as k-means can then

be used to find structure in the data. Albeit similar, our method differs in three major

ways. First, we use keywords instead of citations in the similarity matrix computation.

Second, the optimization problem being solved is different. Visualization methods try

to optimize for clarity, while diffusion map aims to retain the diffusion distance. Third,

the dimensionality of our output space can be more than two, as our main goal is clus-

tering rather than distance visualization.

3. Adaptation for the case study

This section presents an adaptation of the methodology for the case study. The

abstract steps introduced in Section 2 are now applied to current data mining literature.

Figure 2 shows the adapted knowledge discovery steps to fit the task of mining specified

literature. Each step now contains more phases and the detailed execution has to be

determined. The redefined steps are as follows:

1. Selection of relevant literature using impact factors and manual screening of

journals.

2. Dataset formation (automatic preprocessing and transformation), including web

scraping, filtering, normalization and title conversion.

3. Data mining with dimensionality reduction and clustering.

4. Interpretation of the summaries obtained from the previous step and comparison

with published expert opinions.

These steps are detailed in the following subsections and the motivation behind them

is discussed.

8



Figure 2: Our adaptation of the knowledge discovery process for mapping research literature

based on Fayyad et al. (1996a), cf. Figure 1.

3.1. Selection of relevant literature

In this practical case the literature selection step in the methodology is specialized

to find the most relevant journals and articles. In order to limit our data to only articles

concerning the field of data mining, we used the following restrictions:

1. Selecting journals that are listed in WoK.

2. Limiting the WoK subject categories.

3. WoK impact factor over a threshold.

4. Further voting about the relevance to data mining.

5. Limiting the target time frame.

To identify relevant journals, we suggest using the impact factor metric published

yearly in the Journal Citation Report8 of WoK. Impact factor (Garfield, 1972) is a

numerical value, that provides a quantitative tool for ranking journals based on their

impact to a field of science. The impact factor is computed by dividing the number

of citations made to the articles of a journal by the total number of articles published

during a time window. Longer-term impact factors and trend graphs are available from

WoK, but we restricted our scope to one-year impact factors in order to get a recent pic-

ture of the quickly developing field of data mining, with the newest journals included.

Impact factors of 2010 were the most recent ones available when starting our work.

Despite its limitations and pitfalls, discussed, for example, in Seglen (1997), impact

factor is regarded as a de facto tool for assessing the relevance of journals. Therefore,

we chose to restrict our study to journals with impact factor higher than the arbitrarily

selected threshold of 1.0 in order to focus only on the most cited research. Comparing

impact factors might not generalize to very interdisciplinary topics, because the metric

is not comparable across fields of science due to different citation cultures. However, in

our case of data mining, we expect the topic to be covered mostly by journals focusing

on computer science, statistics and mathematics, between which we expect the citation

culture to be similar.

The Thomson Reuters Web of Knowledge divides the listed journals to 176 subject

categories. Not all of these categories are related to the field of science that is in focus.

In our study we selected the following categories, which in our opinion should contain

8http://wokinfo.com/products_tools/analytical/jcr/
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most of the work related to the field of data mining: “computer science, artificial intelli-

gence”; “computer science, information systems”; “computer science, interdisciplinary

applications”; “mathematics, applied”; “mathematics, interdisciplinary applications”;

“statistics & probability”.

In Tables 1 and 2, we list the journals that were initially identified as the candidate

data sources for this study, i.e., they were listed in the WoK, had an impact factor

of at least 1.0 and included one of the words Data Mining (dm), Data Engineering
(de), Knowledge Discovery (kd), Knowledge Engineering (ke) or Data Analysis (da)
in their editorial statements or public scope definitions. The technical filtering did not

seem to single out the most data mining related journals, perhaps due to the term data

mining being a buzzword used more than it factually should. So finally, to focus on

the most relevant ones, we voted for inclusion of journals based on inspection of the

journals’ editorial statements and preliminary browsing of their content. The threshold

of inclusion was that at least two of the three authors regarded the journal relevant.

In Table 1, we show the journals that were finally selected for inclusion in this study,

based on subjective evaluation of each journal’s relevance to our research questions. In

Table 2, we list the journals that were initially identified but finally rejected. The last

column of the tables shows the number of relevance votes that each journal received

from the authors.

In our case study, the purpose was to get a snapshot of recent publications, so we

chose to restrict our study to the articles published during the year 2011.

3.2. Article dataset formation

We built our database using web scraping to collect data directly from the journal

databases via the public WWW interfaces provided by the publishers. Other sources

could be added for further studies. For this study the scraper reads the WWW pages of

the journal publishers and yields a database entry for each article, including the title,

keywords and name of the journal where the article has been published. All published

titles from each journal will be listed at this stage, including many non-essential ones,

such as editorial comments, letters to the editor, book and software reviews and calls

for papers. These non-essential titles are then automatically filtered out based on words

contained in the title. Our approach does not extract keywords from the text. Instead, it

uses the available metadata and assumes that they are correctly entered by the authors.

Also, some further pre-processing was found to be necessary because of varying

formats and conventions found in the data sources. Notational conventions were occa-

sionally found to differ also between different articles within a journal. These discrep-

ancies necessitate a technical cleaning step, where HTML tags are removed, Greek

letters and mathematical symbols are converted to corresponding LATEX expressions,

and the separating characters in keyword lists are heuristically chosen. In order to fur-

ther normalize the keyword lists, we created an automatic tool that converts plurals to

singular form, and British English spellings into their American English equivalents.

Feature extraction from the metadata is straightforward. The occurrence of key-

words describes the contents of an article, which means that a binary feature vector can

be used to represent an article. While inspecting the author-defined lists of keywords,

10



Table 1: Selected journals after relevance vote.

Selected journal Scope Publisher rel.

ACM Transactions on Information Systems dm,kd ACM 2

Applied Soft Computing dm Elsevier 2

Bayesian Analysis dm ISBA 3

Computational Statistics & Data Analysis dm,da Elsevier 3

Computer Journal dm Oxf.UP 3

Data Mining and Knowledge Discovery dm,kd,da Springer 3

Fuzzy Sets and Systems da Elsevier 2

Genetic Programming and Evolvable Machines dm Springer 2

IEEE Transactions on Knowledge and Data Engineer-

ing

de IEEE 2

Information Sciences de,ke Elsevier 3

International Journal of Approximate Reasoning da Elsevier 2

International Journal of Information Technology &

Decision Making

dm World Sc. 2

International Journal of Innovative Computing Infor-

mation and Control

dm,kd,

da

ICIC 2

Journal of Computational and Graphical Statistics da ASA 2

Knowledge and Information Systems dm,de,

kd,ke

Springer 2

The Knowledge Engineering Review ke Cambr.UP 2

Machine Learning dm Springer 3

Pattern Analysis and Applications ke Springer 2

Pattern Recognition Letters dm Elsevier 3

Statistics and Computing dm,da Springer 3
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Table 2: Excluded journals after relevance vote.

Excluded journal Scope Publisher rel.

ACM Transactions on Database Systems dm ACM 0

ACM Transactions on Internet Technology dm,kd ACM 0

ACM Transactions on the Web dm ACM 0

Artificial Intelligence in Medicine ke Elsevier 0

Computer-aided Civil and Infrastructure Engineering de Wiley 0

Computers in Industry ke Elsevier 0

Data & Knowledge Engineering de,ke Elsevier 0

Electronic Commerce Research and Applications dm Elsevier 0

Environmental Modelling & Software dm Elsevier 0

Expert Systems with Applications kd Elsevier 1

Information Systems dm Elsevier 1

Integrated Computer-Aided Engineering kd IOS Press 0

Journal of Database Management dm,ke IGI Publ. 1

Journal of Hydroinformatics ke IWA Publ. 0

Journal of Molecular Modeling da Springer 0

Journal of Quality Technology ke ASQ 0

Journal of Web Semantics kd Elsevier 0

Psychometrika da Springer 0

SAR and QSAR in Environmental Research da Taylor&Fr. 0

Stata Journal da StataCorp 1

World Wide Web – Internet and Web Information Sys-

tems

dm Springer 0
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we found out that the keywords, even after normalization, were quite different from

each other, even when the articles could have been related to similar topics based on

their titles. To improve the situation, our system augments the list of keywords in the

following way:

1. List all of the original keywords (for example “face recognition”).

2. Add to the list also split, i.e., single-word, versions of the original keywords (for

example “face” and “recognition”).

3. Remove common English stopwords (such as “a”, “the”, “in”, “and”, . . . ) from

the list.

4. Remove also some additional words very common in scientific titles (such as

“using”, “based”, “novel”, “new”, . . . ).

Each article is then judged by the software to be related to a keyword in the list if the

keyword is found within the title or within one of the keywords of the specific article.

For example, an article with the title “About face recognition” would be related to the

keywords “face recognition”, “face” and “recognition”. The information is stored as a

binary matrix where each row corresponds to an article and each column to a keyword

in our augmented keyword list. A non-zero element means that the keyword is found

from the title or keyword list of the article.

At the end of this step, we automatically remove singleton keywords and articles,

i.e., keywords that appear only once and articles that contain no keywords common

with any other article. Such singleton words are irrelevant in analyzing connections

between the articles. In our case study, the final keyword list contained 11,844 words

or phrases, and with 2,511 articles the size of the matrix was 2, 511 × 11, 844. After

removal of singleton words and articles, 4,187 keywords and 2,499 articles remained.

The data matrix of size 2, 499 × 4, 187 was sparse; only 0.3% of its values were ones

instead of zeros.

3.3. Data mining
The data mining step follows closely the article clustering approach presented in

Section 2.3.1. Figure 3 shows the clustering results for our case study at the first it-

eration level. The visualization uses the first three dimensions, although empirically

chosen first six dimensions were used in the analysis. These coordinates in the figure

correspond to the three largest eigenvalues obtained from the diffusion map algorithm.

The iterative approach clusters the articles into several categories, which can be

used to analyze the structure of the dataset. The obtained clusters vary considerably

in size. Inspection of the keywords and titles in the clusters reveal that the separated

clusters have high semantic cohesion. The iteration is stopped when the total size of

the separated clusters becomes smaller than 2% of the original data. We conjecture that

the most important clusters according to the keyword vectors are found during the first

few iterations.

4. Results of the case study

This section presents the results of our case study with key findings and answers

to the original research questions: the main topics, most frequent methods and journal

13



�����

�����

�

����

����

������

�����

������

�����

������

�

�����

����

�����

����

�����

�

����

����

��� 	

��
����

�������
�� 
� ��� �������� ����� ������

��� 	

��
����

�
��
 
!
!
��
"#
$
%&

Optimization

Residual
�

�
�

���

Networks

Fuzzy

Models

Figure 3: Low-dimensional embedding of the article dataset. Each point corresponds to one

article. Different clusters are marked differently, and given their interpreted names. The dense

residual cluster can be seen in the middle. For visual clarity, only one third of the data (randomly

selected) is plotted in this figure.
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identities in the field of data mining, taking into account the restrictions set by the

article selection process. We find that the most convenient order is to report the findings

from simple keyword frequency counts first, and then to continue with the results from

clustering and journal distributions.

4.1. Keyword frequency analysis

Of the 4187 keywords only some were obviously related to data mining methods.

This led to a subjective screening of the keywords. The most common method-related

keywords and their frequencies were fuzzy (327), optimization (198), classification
(172), clustering (119) and Bayesian (112). All of these are rather general method

families.

The more specific method families were not mentioned as frequently. The follow-

ing list includes notable examples of these method-related keywords: neural network
(63), genetic algorithm (62), stochastic (53), particle swarm optimization (42) sup-
port vector machine (40), fuzzy logic (36), feature extraction (30), feature selection
(30), pattern recognition (27), evolutionary algorithm (26), self-organizing (23), deci-
sion tree (19), genetic programming (18), reinforcement learning (17), hidden Markov
model (17), PCA (16), differential evolution (15), self-organizing map (14), dimen-
sional reduction (14), least squares (13), kernel method (13), Kalman (13), fuzzy clus-
tering (12), k-means (11), manifold learning (11), feature detection (8), c-means (8)

and independent component analysis (6).

Some other findings, that were omitted from the above list, are worthy of a short

discussion. There were 63 articles that had data mining itself as a keyword. The

frequencies of keywords linear (125) and non-linear (61) tell something about the ex-

pected result that linear methods are studied or used more widely. Four often mentioned

application areas were face recognition (32), wireless sensor network (30), image seg-
mentation (23) and text analysis (12).

4.2. Structural view using clustering

The iterative clustering resulted in 19 clusters on five iteration levels and a final

residual cluster of size 598. Therefore, 76% of the data falls within these 19 identified

clusters. Figure 4 illustrates the levels of the iterative clustering process. The clusters

are manually labeled from the most common keywords inside them. On the highest

level, the original data of 2,499 articles was clustered into four smaller clusters and

a residual cluster of 1,459 articles. We chose a descriptive name for each cluster by

examining the 10 most common keywords in the cluster.

Thus, the highest level revealed the following clusters (number of articles in paren-

theses): Models (388), Networks (241), Fuzzy (239) and Optimization (172). The Mod-
els cluster included also keywords such as Bayesian, fuzzy, Markov and regression. The

Networks cluster covered both neural networks and sensor networks. The Fuzzy clus-

ter included topics such as fuzzy sets and fuzzy logic. Finally, the Optimization cluster

included particle swarm optimization and topics related to evolutionary and genetic
algorithms.

The second level was obtained by clustering the residual cluster (1,459 articles)

of the first level. Clusters on this level were named Images, Learning, Face/Pattern
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Figure 4: Clusters found during the first five iterations of the algorithm. The numbers tell how

many articles fall into the respective clusters. Names are given by inspection of cluster contents.
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recognition, Classification, Data mining & Patterns, and SVM. Like on the first level,

the descriptive names were chosen on the basis of the 10 most common keywords in

the clusters. For example, common keywords in the Images cluster contained image
segmentation, image retrieval and classification.

The third level extracted two new clusters that we call Control and Semantic web &
Ontology. The fourth level revealed the clusters of Estimation, Functions, Clustering,

Query Processing and Rough Sets. The fifth level yielded one more larger cluster,

Security, and a very small cluster Computer History. The ending criterion was met on

this level.

4.3. Journal distribution
The number of articles is not uniformly distributed among the journals, as shown in

Table 3. It is also seen that each journal has its own areas of interest with respect to the

clusters identified by this study. For example, Pattern Recognition Letters publishes

articles related to the clusters Recognition and Images; in contrast, articles published

in Fuzzy Sets and Systems belong to the Fuzzy cluster. On the other hand, journals like

International Journal of Innovative Computing, Information and Control (IJICIC) and

Information Sciences relate to almost all the clusters in the taxonomy discovered by

our framework.

4.4. Discussion
This case study presented one viewpoint to understand recent data mining litera-

ture. This discussion compares our results to the expert opinion. The advancement of

the field has been of interest to the community, and accordingly some overviews have

been made. Among recent overview literature there are some interesting papers, such

as the one by Kriegel et al. (2007) where the authors envision the major challenges in

data mining and knowledge discovery today and especially in the future. Venkatadri

& Reddy (2011) give a general overview of current and future trends in data mining.

In a similar manner, Kumar & Bhardwaj (2011) review potential future application

areas. Wu et al. (2008) give a list of top data mining algorithms based on the opin-

ions of an expert panel. We contribute to this discussion by the quantitative results

presented above. Although interesting and enlightening reading, the current reviews

and position papers seem to be somewhat restricted in their scope of selected litera-

ture, whereas our study attempts to sample the current state of the leading data mining

research holistically with an objective, structured and more unbiased method that is

based on a methodically selected subset of literature.

The definition of current data mining research is, to an extent, a question of opin-

ion. However, our results seem to adhere to the opinions of other data mining experts.

The findings in Section 4.1 about methods are quite similar to KDnuggets poll an-

swers9, where “academic” persons’ most used algorithms in data mining in 2011 were

genetic algorithms, support vector machines and association rules. In their brief re-

view, Venkatadri & Reddy (2011) recognize neural networks, fuzzy logic and genetic

9http://www.kdnuggets.com/polls/2011/algorithms-analytics-data-mining.html
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Table 3: Journal distribution in clusters
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Models 4 15 27 92 6 10 1 35 12 8 51 14 11 4 16 7 33 27 13 2

Networks 1 31 1 2 3 4 2 30 7 1 67 0 14 7 5 1 4 2 59 0

Fuzzy 0 34 0 2 0 64 0 57 18 9 45 0 4 2 0 0 4 0 0 0

Optimization 0 42 1 4 0 0 12 38 0 2 43 0 8 2 3 2 3 1 9 2

Images 1 5 0 5 1 0 1 15 0 1 36 0 2 0 0 8 63 0 7 0

Learning 1 6 0 0 3 0 1 17 2 2 7 1 8 6 21 1 16 0 3 2

Recognition 0 5 0 0 1 0 0 2 1 1 20 0 3 1 0 1 58 0 3 0

Classification 1 4 0 3 3 1 0 8 5 2 11 0 8 5 1 3 20 2 0 1

Data Mining & Patterns 1 5 0 0 6 0 0 14 1 2 6 0 14 15 3 0 0 0 0 0

SVM 0 4 1 3 0 0 0 7 0 0 5 1 1 1 1 1 9 0 0 0

Control 0 3 0 8 0 0 0 7 0 0 63 0 0 0 0 0 2 0 3 0

Semantic Web & Ontology 0 0 0 0 0 0 0 1 1 1 1 0 1 2 0 0 0 0 0 7

Estimation 0 0 0 21 0 1 0 7 2 1 10 3 1 1 0 1 13 5 0 0

Functions 0 1 0 10 0 9 0 15 14 2 8 0 2 2 0 0 2 0 0 0

Clustering 0 0 0 2 0 0 0 6 0 0 4 2 3 3 0 0 16 1 1 0

Query Processing 0 0 0 0 0 0 0 2 0 0 0 0 27 1 0 0 0 0 2 0

Rough sets 0 0 0 0 0 3 0 8 3 0 2 0 0 0 0 0 1 0 0 0

Security 0 0 0 0 0 0 0 8 0 0 12 0 0 0 0 0 0 0 3 0

Computer History 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

Residual 7 8 2 75 8 22 7 71 28 18 116 33 21 23 9 8 57 13 56 16

TOTAL 16 163 32 227 31 114 24 348 94 50 507 54 128 75 59 33 301 51 162 30
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programming as the future trends of data mining. Our results in Section 4.2 agree with

their findings since corresponding clusters were found already on the first level of our

iterative algorithm. Journal distribution analysis in Section 4.3 showed that most jour-

nals specialize in just a few topics. However, some journals publishing more diverse

topics were also found. The journals adhere to the obtained clustering quite closely,

which can help a researcher to select a publication venue.

Overall, our findings seem to agree with the definition of data mining by Hand et al.

(2001), which suggests that what is done currently under the label of data mining still

studies the problems stemming from the definition given over ten years ago.

4.5. Benefits and limitations

In our study, we did not use an existing benchmark corpus because one main goal

of the research was to apply the method to immediately gain new information about

recent data mining literature. The method is verified by comparing it to existing expert

opinion instead. We wanted to base our study on freely available public data, which

excludes full texts in many cases. This unfortunate fact was noted also by some of

the researchers we have cited above. The use of full texts would have given a larger

feature space and produced more noise. While the main connections might be the

same as when using metadata, the additional data mass could have created unforeseen

connections between articles that cannot be produced with mere metadata.

To our knowledge this is a unique study of this kind performed on recent data

mining literature, which should make the results useful for the data mining community.

5. Conclusion

Following the knowledge discovery process, we created a literature mapping frame-

work based on article clustering. It can be used to analyze topics of current interest in

a particular field of science. As a case study, we tested the framework with data min-

ing research literature. Our approach uses publicly available metadata about articles

published in high-impact journals. The proposed methodology can be automated, but

a more delicate screening may use manual approach in needed steps. In the case study,

the data source selection and interpretation included manual work. The methodology

is mainly automated and the individual steps can be changed if a more fitting method

is discovered. Because of automation the process is less biased than surveys that use

opinion-based approach.

The clustering enables a researcher to get a quick overview of the topics published

in the selected body of literature. The system may reveal unexpected articles under

a topic label, because an article can be connected to the cluster via keywords other

than the obvious cluster label. Thus, the structural view could be used as a search

strategy that complements a simple keyword search. Also, a starting point for a quick

literature review on a topic, for example “Security applications of data mining” which

was a cluster found in our case study, could be the articles within the particular cluster.

Larger clusters corresponding to more general topics, such as “Optimization in data

mining”, could be taken as a basis of a new clustering, in order to find and categorize

subtopics. For the goals in our case study, though, the initial granularity was sufficient.
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Our methodology should be helpful for individuals and companies trying to gain an

understanding of large textual datasets, e.g., personal or company internal documen-

tation. It should be useful also for the application field scientists and companies who

want to find methods that are currently used widely.

The clustering framework could be used with many different datasets, large or

small. There may be scalability issues with larger datasets due to the dimensional-

ity reduction and clustering methods used. Another problem with a large dataset is that

some details could be lost in noise. However, when searching for a general overview,

this is not a big problem.

Currently the output of our method is a snapshot of current published articles. Com-

bining a longitudinal point of view might reveal long-term trends in research literature.

Our approach could benefit from additional information gained from features extracted

from abstracts. Abstracts are usually freely available in addition to keywords and titles,

whereas other parts of the articles might not be.
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discovery on the internet. IEEE Intelligent Systems, 14, 55–62.

Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster Analysis. (4th ed.). London,

Arnold; New York: Oxford University Press.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowl-

edge discovery in databases. AI Magazine, 17, 37.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996b). The KDD process for ex-

tracting useful knowledge from volumes of data. Communications of the ACM, 39,

27–34.

Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178,

471–479.

Glänzel, W. (2003). Bibliometrics as a research field. A course on theory and applica-

tion of bibliometric indicators. Course Handouts.

Hand, D., Mannila, H., & Smyth, P. (2001). Principles of data mining. Adaptive

computation and machine learning. Cambridge, Mass.: MIT Press.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2011). The Elements of Statistical Learn-
ing. New York: Springer.

Ivancheva, L. (2008). Scientometrics today: A methodological overview. In Fourth In-
ternational Congerence on Webometrics, Informetrics, and Scientometrics & Ninth
COLLNET Meeting.

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des
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Abstract

A system health monitoring scheme using diffusion map is proposed. Diffu-
sion map reduces the dimensionality of measurement data. This facilitates the
comparison of newly arriving measurements to the known training data. The
method is trained and tested with real gear monitoring data. The results show
that data recordings can be classified as working or broken using dimensional-
ity reduction.

1 Introduction

Modern industry monitoring systems produce high-dimensional data that are diffi-
cult to analyze as a whole without dimensionality reduction. The goal of the study is
to estimate whether the proposed dimensionality reduction scheme effectively dis-
tinguishes working gears from broken ones. System health management has mul-
tiple sensors that measure vibration, temperature and oil properties. The early de-
tection of anomalous gear behavior using this sensor data reduces the risk of severe
damage. Sensor data are then used to monitor the health of the system, to detect
anomalies and to predict problems [3, pp. 15–16].

Anomaly detection methods try to find deviant or atypical measurements from a
large datamass [3]. In this study known anomalies are in the training so that they can
be contrasted with the normal behavior. An ideal indicator would tell with certainty
that a machine works or is going to fail. However, in reality the non-working state
is ambiguous and it can be difficult to classify.

Spectral dimensionality reduction methods include principal component anal-
ysis (PCA), kernel PCA, multi-dimensional scaling (MDS), Laplacian eigenmaps,
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isomap and locally linear embedding (LLE). These methods facilitate the analysis
of high-dimensional data by mapping the high-dimensional coordinates to a lower
dimension. The spectral approach also leads to the concept of spectral clustering
[2, 19]. Spectral methods have been used to analyze system operational states [15],
motor fault detection [14] and anomaly detection for spacecraft [7].

This study uses diffusion map, which is another spectral dimensionality reduc-
tion method. Its mathematical foundation is random walk on Markov transition
matrix of the graph of the data [4]. Diffusion map can be classified as a nonlinear
distance-preserving dimensionality reduction method that preserves global proper-
ties [18]. Furthermore, the Nyström method is used to extend new points, although
newer methods such as geometric harmonics exist [6, 5]. A similar study using
diffusion map has been made concerning machine condition monitoring [8]. This
study presents a way to detect faults in gears by devicing an index to describe how
close to the faulty state a gear is. Besides gear fault detection, this method can also
be used with other collections of high-dimensional time series data.

2 Method

This method trains a diffusion map that describes the good and bad state of the
gears. It then extends newly arriving test measurements to the model and clas-
sifies the gear as good or bad. Most of the preprocessing is domain specific, but
the dimensionality reduction and classification, that are more universally applica-
ble, are presented here. Figure 1 introduces the overall data processing architecture.
The equations are in matrix form. The details behind them are discussed elsewhere
[12, 6, 1].

Figure 1: Data processing block diagram.

2



2.1 Training dimensionality reduction

The underlying assumption in manifold learning methods is that the data is situ-
ated on a lower-dimension manifold in the high-dimension measurement data [3, p.
37]. We try to create a function that maps the behavior of high-dimensional points
to lower dimensions. Then new measurement points are mapped from high dimen-
sions to this low-dimensional presentation.

Let xi ∈ R
n, i = 1 . . . N be a measurement in n-dimensional space. The kernel

matrix W includes the pairwise distances of these points. The used kernel is the
Gaussian kernel using Euclidian distance measure. This is the most computationally
intensive step because each point is compared to other points:

Wij = exp

(
−||xi − xj||2

ε

)
. (1)

Determining ε is a problem in itself. The chosen estimation is the median of the
distances between the points, ε = median{||xi − xj||}xi,xj∈Rn [16]. Depending on the
problem, changing this parameter might give more meaningful results.

Matrix Dii =
∑N

j=1 Wij has the degree of each point on its diagonal. The degree
of a point is the sum of weights that connect to other points. This is equal to the sum
of kernel matrix rows.

The rows are normalized by these sums. The result can also be understood as
transition probabilities between points. These probabilities are collected in matrix
P ,

P = D−1W. (2)

However, future calculations on P become easier if a similarity transformation
symmetricizes the matrix:

P̃ = D
1
2 PD− 1

2 . (3)

These last two steps can be combined. Substituting P with D−1W yields:

P̃ = D− 1
2 WD− 1

2 . (4)

Such normal matrix is decomposed as:

P̃ = UΛU∗. (5)

This decomposition is done using singular value decomposition (SVD). The columns
of matrix U contain eigenvectors uk of matrix P̃ . Likewise, the diagonal of Λ con-
tains its corresponding eigenvalues. However, the real interest is in the eigenvectors
of the transition matrix P . The eigenvalues of P are the same, but the eigenvectors
are obtained from V :

V = D− 1
2 U. (6)

3



Recall that the eigenvalues λ are in the diagonal of Λ. The eigenvector v are
columns of V . An original data point xi has a corresponding value on the ith row of
the eigenvector. For example, v2(x236) would signify the second eigenvector and its
236th row, corresponding to the 236th sample x236 of the original dataset.

The diffusion map itself is a function in the form Ψ : R
n → R

d, when d � n. We
multiply the eigenvectors and eigenvalues to get the diffusion coordinates of the
training points:

Ψ = V Λ. (7)

The first eigenvector is constant, so only the following eigenvectors and eigen-
values are used. This way we get the following function that maps the original data
points to a lower-dimensional space:

Ψd : xi →

⎛
⎜⎜⎜⎜⎜⎝

λ2v2(xi)
λ3v3(xi)
λ4v4(xi)

...
λd+1vd+1(xi)

⎞
⎟⎟⎟⎟⎟⎠ . (8)

It has been shown that the diffusion distance in the original space equals to the
Euclidean distance in the diffusion space [4]. Thus, the distance measurements in
the diffusion space are actually meaningful and can be used in further analysis in
this lower-dimensional space.

Later analysis uses only the first few diffusion coordinates. Fast decay of eigen-
values leaves most of the diffusion coordinates rather small compared to the first
few. The overall reconstruction of P does not differ much from a reconstruction that
uses only the first coordinates. These coordinates capture most of the differences
between the data points [4, 11].

2.2 Extension of new measurements

New measurements that are not part of training are extended to the model with
Nyström method [6, 1]. The features selected during training are the only ones
needed. These new measurements are normalized using the same normalization as
during training.

Let a new data point be yj ∈ R
n. Then the distance between the new points and

each training point are collected in a matrix W̄ . This function uses the same ε as the
one in training phase:

W̄ij = exp

(
−||xi − yj||2

ε

)
. (9)

Diagonal matrix D̄ii =
∑N

i=1 W̄ij contains the column sums of W̄ . Now we can
create the transition probability matrix B:
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B = W̄ ∗ D̄−1. (10)

The following matrix multiplication produces new eigenvectors for the new point.
The eigenvectors V and eigenvalues Λ are the same as in training:

V̄ = BT V Λ−1. (11)

These new eigenvectors now extend the new point to the diffusion coordinates:

Ψ̄ = V̄ Λ. (12)

The last two steps can be combined:

Ψ̄ = BT V. (13)

Matrix Ψ̄ now contains the extended eigenvectors in its columns for the new
points yj .

2.3 Classification of new measurements

Low-dimensional presentation of the data facilitates clustering. The clustering ap-
proach here is spectral clustering and it reveals the normal and anomalous areas
[19, 9]. Any other clustering, for example k-means, can be used if they provide bet-
ter results [13, 10, 17]. The used algorithm simply tests whether the sample is to the
left or to the right of 0 on the dimension corresponding to the 2nd eigenvector. This
provides a classifier that discriminates two states: working or broken.

2.4 Warning levels

For more warning levels, different thresholds can be applied. There are three warn-
ing levels: note, warning and damage. These describe the severity of the problem in
the gear.

Note means that there is an unusual measurement in the data, but the gear is still
in operational state. The sample is not inside the good cluster but is still closer to it
than to the bad.

θnote = min{Ψ1,good} (14)

Warning level is at θwarning = 0. It describes the border between good and bad
clusters. The sample is closer to the bad cluster. This can be seen as a predictive
sign that the gear has problems. If the bad cluster goes beyond 0, the middle point
between the two clusters can be used.

Damage level is at θdamage = max{Ψ1,bad}. This means that the sample is within
the bad cluster.
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3 Results

This study uses a dataset consisting of gear monitoring recordings of multiple fea-
tures. It consists of recordings of 18 good and 20 bad machines labeled by domain
specialists. The gears come from different locations where the operational environ-
ment varies. However, each gear is of the same type and includes same features.
Two of the gears are discarded because they contain empty data due to instrument
failures. The dataset is divided to training and testing sets. The training set includes
five good and five bad gears. The testing set includes the rest of the gears.

3.1 Preprosessing

The data are sampled at an approximate frequency of one sample per 30 minutes.
The recordings last for months. Because there were times when no data were avail-
able, linear interpolation is used. This data formed the samples × features matrix.

Instrument failures give unrealistic or missing measurements. Because it is diffi-
cult to compare such measurements to ones that do not have unrealistic values, mea-
surements containing missing values are discarded. However, this process might
lose some usable information.

3.1.1 RPM filtering

Samples whose rotations per minute (RPM) value is too small are filtered out, be-
cause only higher values represent the actual working state of a gear. Lower values
are associated with idle state, and those measurements are not interesting when
monitoring actual working gears. The RPM values are clustered into two clusters
using k-means clustering. The threshold value,

thresholdRPM = max{min{RPMcluster 1}, min{RPMcluster 2}}, (15)

is calculated and all the samples whose RPM value is below this threshold are re-
moved.

3.1.2 Data scaling

All the data are normalized with logarithm. Other normalizations, like dividing by
maximum or dividing by norm, do not give as good separation for this dataset.

3.1.3 Feature selection

There are 136 features. The initial feature selection reduced their number to 20.
Some features separate more clearly the two groups from each other. A preliminary
feature selection in the original feature space gives these features. One feature is
left out at a time. The average Mahalanobis distance between the good and bad
machines shows how much that feature describes the difference. The features with
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smallest averaged Mahalanobis distances are most useful. Small distance reveals
that leaving the feature out affects negatively the separation of good and bad. Thus,
using the feature separates the groups well in the feature space.

4 Classification results

Five good and five bad gears were used in training. The data has 136 features, 20 of
which are used after preliminary feature selection. All the gears, including training
gears, were then tested as new incoming data. Table 1 shows that each of the broken
test gears had alerts. Table 2 shows that no working gear had warnings, although
some of them had notes.

gear alerts
OO03 2.5703%
*OO06 14.4068%
OO08 42.6573%
OO09 6.6667%
AH01 16.835%
AH02 16.7431%
AH06 2.8777%
*AH11 14.916%
AH18 7.0941%
FE09 5.3495%
FE10 4.4068%
*FE12 16.0083%
CA03 22.7599%
CA04 7.7089%
QU23 6.0469%
*QU32 21.6535%
ET104 0.32841%
*ET403 3.3597%
PH05 9.3694%

Table 1: Broken gear units (alert
threshold 0). Asterisk marks training
gears.

gear alerts
*AH10 0%
AH16 0%
AH18 0%
FE01 0%
*FE02 0%
FE03 0%
CA01 0%
LS04 0%
*LS05 0%
MB08 0%
QU32 0%
*PH01 0%
PH03 0%
PH05 0%
PH08 0%
*PH09 0%
PH13 0%

Table 2: Working gear units (alert
threshold 0). Asterisk marks training
gears.

The following figures illustrate the behavior of broken gears. Normal state does
not produce figures of interest because there are no alerts. Figure 2 shows how the
newly incoming data is situated in low-dimensional space. Figure 3 shows the alert
index, while Figure 4 indicates the accumulating number of alerts. The alerts them-
selves are in Figure 5. Figures 6, 7, 8, 9 show the same measurements for another
gear. It breaks down more slowly but the high number of notes can be seen.
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Figure 2: Samples of a broken gear in low-dimensional space.
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Figure 3: Alert level index of a broken gear. Above 0 is considered normal working
state.
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Figure 4: Number of alerts.
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Figure 5: Alerts given by the method.
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Figure 6: Samples of a broken gear in low-dimensional space.
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Figure 7: Alert level index of a broken gear. Above 0 is considered normal working
state.
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Figure 8: Number of alerts.
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Figure 9: Alerts given by the method.
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5 Discussion

The goal of this study is to estimate the usefulness of dimensionality reduction
methods in gear fault detection. This goal is met since almost all the gears are clas-
sified correctly according to their labels. This proves that the training is successful
and separates the good gears from the bad. More importantly, measurements from
totally different gears can be extended into the model.

The misclassification of good machine FE01 as bad is probably because of the
data interpolation. Further domain analysis revealed that there actually had been
a small problem with the gear, and thus raises the question whether it is labeled
correctly. The misclassification of bad machine ET104 as good can be explained.
Firstly, there are no training gears from this location. ET104 is too close to the good
gears in diffusion space. Secondly, domain analysis reveals that this gear has only
a small problem. Better training data and more detailed labeling could prevent this
kind of misclassification. Vastly different operating environment and behavior of
gears in ET1 might also cause this misclassification.

The problems of spectral methods in general need some addressing. The pro-
posed method works because, after slight filtering, the good and bad gears are sep-
arable in the lower dimensions. However, the high computational cost could be a
problem in a more real-time system. The classification of a gear time series itself is
an ambiguous concept. However, this study shows that gears in normal condition
and gears that are going to break down behave differently and can be separated
from each other.
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Abstract—The initial training phase of machine learning al-
gorithms is usually computationally expensive as it involves the
processing of huge matrices. Evolving datasets are challenging
from this point of view because changing behavior requires
updating the training. We propose a method for updating the
training profile efficiently and a sliding window algorithm for
online processing of the data in smaller fractions. This assumes
the data is modeled by a kernel method that includes spectral
decomposition. We demonstrate the algorithm with a web server
request log where an actual intrusion attack is known to
happen. Updating the kernel dynamically using a sliding window
technique, prevents the problem of single initial training and can
process evolving datasets more efficiently.

Index Terms—perturbation theory, eigenvalue problem, dif-
fusion maps, dimensionality reduction, anomaly detection, web
traffic

I. INTRODUCTION

Evolving data that requires frequent updates to the training

is a challenging target when extracting constructive infor-

mation. The computational complexity of the training phase

increases with such datasets because an earlier profile may

not accurately represent the behavior of current data. There-

fore, the extracted profile has to be updated frequently. A

straightforward approach for updating the training profile is

to repeat the entire computational process that generated

the original profile. This paper summarizes a method for

efficiently updating the evolving profile.

A common practice in kernel methods is to extract features

from a high dimensional dataset, and to form a similarity graph

between the features in the dataset. In this research we apply

the Diffusion Maps (DM) methodology [1] to a web traffic

log. DM finds the embedded coordinates for a low-dimensional

representation of the data. This embedding is accomplished by

eigenvectors computation of the graph affinity matrix. Changes

in the affinity matrix will result in changes in the eigenvectors,

and thus will force us to compute them frequently. We use

a solution based on the Recursive Power Iteration algorithm

combined with the first-order approximation of the perturbed

eigenvectors and eigenvalues (eigenpairs) [2]. This enables us

to update the dataset profile by considering only the changes

in the original dataset, which also requires less computational

effort.

Since network data is dynamic and evolving, the embedded

low-dimensional space has to be updated as the training data

does not adequately represent the incoming data that did not

participate in the initial training phase. Even if most of the

network log lines in our interest window are unchanged, we

will still need to perform the entire computation since we

cannot determine the effect of such a change on the embedded

space. Therefore, the goal of the paper is to provide an efficient

method for updating the embedding coordinates without the

need to re-compute the entire SVD again and again over time.

We treat the log line feature changes as perturbations from

the original network log profile of the feature affinity matrix.

By applying a sliding window technique to the incoming

network data, we are able to process the data online, and

keep embedding it in the low-dimensional space. We test this

method on real web traffic data and compare our results to the

true classification.

II. RELATED WORK

Traditional computational methods such as the power it-

eration, inverse iteration and Lanczos methods operate in

the same way and compute the eigenpairs of each update

of the perturbed matrix. Here, the computation is performed

with a random guess as the initial input without taking the

unperturbed matrix and its eigenpairs into consideration.

Incremental versions of low-dimensional embedding al-

gorithms have been tailored specifically to fit local linear

embeddings (LLE) [3] and ISOMAP [4]. These algorithms

use modified manifold learning methods to process the data

iteratively. When a new data point arrives, these algorithms

add it to the embedding and then efficiently update all the

existing data points in the low-dimensional space.

Network security has been one focus among the machine

learning community. Kruegel and Vigna studied the parameters

of HTTP queries using a training step with unlabeled data with

various methods. Their character distribution analysis uses

similar feature extraction as our current study [5]. Hubballi

et al. described an n-gram approach to detect intrusions

from network packets [6]. Ringberg et al. studied IP packets

using principal component analysis-based dimensionality re-

duction [7]. Callegari et al. analyzed similar low-level packet

data [8].



Diffusion maps have been also used for network security

problems. David studied the use of diffusion map methodology

for detecting intrusions in network traffic [9]. Network server

logs have also been studied with diffusion maps with an offline

approach using n-gram features and spectral clustering [10]. In

these works, data analysis was performed in a batch fashion,

processing all recordings as a single, offline dataset.

III. FINDING A LOW-DIMENSIONAL EMBEDDED SPACE

A. Diffusion Maps

Finding a low-dimensional embedded space is an important

step in understanding high-dimensional data more profoundly.

To better understand the proposed algorithm, we review the

DM methodology [1] that performs non-linear dimensionality

reduction. Given our web log feature matrix X , we define a

weighted graph over the log lines, where the weight between

lines i and j is given by the kernel k(i, j) � e−
‖xi−xj‖

ε .

The degree of a log line (vertex) i in this graph is d(i) �∑
j

k(i, j). Normalizing the kernel with this degree produces an

n×n row stochastic transition matrix whose cells are [P ]ij =
p(i, j) = k(i, j)/d(i) for log lines i and j. This defines a

Markov process over the network log features.

The dimensionality reduction achieved by this diffusion

process is a result of the spectral analysis of the kernel. Thus,

it is preferable to work with a symmetric conjugate to P that

we denote by A and its cells are denoted by

[A]ij = a(i, j) =
k(i, j)√

d(i)
√

d(j)
=
√

d(i)p(i, j)
1√
d(j)

. (1)

The eigenvalues 1 = λ1 ≥ λ2 ≥ . . . of P and their

corresponding eigenvectors vk (k = 1, 2, . . .) are derived from

the eigenvectors uk of A. The vk are used to obtain the desired

dimensionality reduction by mapping each i onto the data point

Ψ(i) = (λ2v2(i), λ3v3(i), ..., λδvδ(i)) for a sufficiently small

δ, which depends on the decay of the spectrum of A [1].

In matrix notation, the operator A is defined as A =
D− 1

2 KD− 1
2 = D

1
2 PD− 1

2 where D is the diagonal matrix

containing the d(i) value in cell Dii. To retrieve the eigenvec-

tors in columns V of P from the eigenvactors of A, we use

the transformation V = D− 1
2 U where U is the eigenvector

column matrix of A. The eigenvectors V obtained for P are

scaled by dividing each one by the first value of the first

eigenvector.

B. Updating the Embedding

Once we have the DM embedding of the initial matrix A,

we need to keep updating the embedding for the next arriving

samples. By replacing the oldest samples with the newly

arriving ones, we can model such a change as a perturbation

matrix Ã of the matrix A. We assume that the perturbations are

sufficiently small, that is, ‖Ã−A‖ < ε for some small ε. Note

that Ã is symmetric since it represents the operator defined

in 1. We wish to update the eigenpairs of Ã based on A and

its eigenpairs. We now present the problem in mathematical

terms.

Given a symmetric n × n matrix A where its k dominant

eigenvalues are λ1 ≥ λ2 ≥ ... ≥ λk and its eigenvectors are

φ1, φ2, ..., φk, respectively, and a perturbed matrix Ã such that

‖Ã−A‖ < ε, find the perturbed eigenvalues λ̃1 ≥ λ̃2 ≥ ... ≥
λ̃k and its eigenvectors φ̃1, φ̃2, ..., φ̃k of Ã in the most efficient

way [2].

In the next section, we explain how such processing can be

done using the recursive power iteration (RPI) algorithm.

IV. THE RECURSIVE POWER ITERATION (RPI)

ALGORITHM

A. Eigenpair First-Order Approximation

To efficiently update each eigenpair of the perturbed matrix

Ã, we first compute the first-order approximation of each

eigenpair. Later, it will be used in our algorithm as the initial

guess for the RPI algorithm.

Given an eigenpair (φi, λi) of a symmetric matrix A where

Aφi = λiφi, we compute the first-order approximation of the

eigenpair of the perturbed matrix Ã = A + ΔA. We assume

that the change ΔA is sufficiently small, which results in a

small perturbation in φi and λi. We look for Δλi and Δφi

that satisfy the equation

(A + ΔA)(φi + Δφi) = (λi + Δλi)(φi + Δφi). (2)

Using the methods described by Shmueli et al. [2], we can

obtain the following first-order approximations for the eigen-

values and eigenvectors of Ã

λ̃i = λi + φT
i [ΔA]φi (3)

and

φ̃i = φi +
∑
j �=i

φT
j [ΔA]φi

λi − λj
φj . (4)

B. The Recursive Power Iteration Method

The power iteration method has proved to be effective

when calculating the principal eigenvector of a matrix [11].

However, this method cannot find the other eigenvectors of the

matrix. In general, an initial guess of the eigenvector is also

important to guarantee fast convergence of the algorithm. In

Algorithm IV.1, which we call recursive power iteration (RPI),

the first-order approximations of the perturbed eigenvectors

of Ã are the initial guess for each power iteration. Once the

eigenvector φ̃i is obtained in step i, we transform Ã into a

matrix that has φ̃i+1 as its principal eigenvector. We iterate

this step until we recover the k dominant eigenvectors of Ã.

The correctness of the RPI algorithm and its complexity

analysis are given in the original article [2].

The justification for this approach is that the first-order

approximation of the perturbed eigenvector is inexpensive, and

each RPI step guarantees that this approximation converges

to the actual eigenvector of Ã. The first-order approximation

should be close to the actual solution we seek and therefore

requires fewer iteration steps to converge.



Algorithm IV.1: Recursive Power Iteration Algorithm

Input: Perturbed symmetric matrix Ãn×n, number of

eigenvectors to calculate k, initial eigenvectors

guesses {vi}k
i=1, admissible error err

Output: Approximated eigenvectors
{

φ̃i

}k

i=1
,

approximated eigenvalues
{

λ̃i

}k

i=1
1: for i = 1 → k do
2: φ ← vi

3: repeat
4: φnext ← Ãφ

‖Ãφ‖
5: errφ ← ‖φ − φnext‖
6: φ ← φnext

7: until errφ ≤ err
8: φ̃i ← φ

9: λ̃i ← φ̃T
i Ãφ̃i

φ̃T
i φ̃i

10: Ã ← Ã − φ̃iλ̃iφ̃
T
i

11: end for

V. SLIDING WINDOW DIFFUSION MAP

Using DM to embed high volumes of data can be compu-

tationally intensive. It is even more challenging when the data

is generated online and needs to be processed continuously.

Therefore, we try to process the incoming data with iterative

methodology by using the sliding window model. A sliding

window X takes into account the n latest measurements. In

practice, it is an n × m matrix with features on the columns

and samples on the rows. The samples are high-dimensional,

so the dimensionality of the sliding window is reduced from

m to d using DM. This n × d matrix Xr now contains the

low-dimensional representation of the data. This reduction

is done each time a new sample appears and the window

moves. However, the consecutive update of the DM is a time-

consuming process that requires singular value decomposition

during each window.

When updating the window, we can replace the oldest

measurement with a new one in the matrix X , therefore

changing a single row in X . This means that one line and

one column of the K matrix in the DM algorithm change.

This change can be interpreted as a perturbation to the matrix

K, and furthermore to the matrix A, which is defined using the

K matrix. The RPI algorithm with first-order approximation

solves the eigenvectors for perturbed matrices. This leads us

to use the RPI algorithm instead of time-consuming SVD.

Algorithm V.1 outlines the sliding window DM method.

First, it solves the eigenvectors for the initial window using

SVD. Then the algorithm iteratively process the following

windows until no new samples are available.

There are, some practical problems with this approach. First,

the RPI algorithm might not be able to solve the eigenvectors

for some low-rank matrices. It is possible to prevent this

with standard SVD when a low-rank (or otherwise unsuitable)

matrix is encountered. Second, the window size itself has to be

Algorithm V.1: Sliding Window Diffusion Map with RPI

Input: Dataset X , window width n, embedded dimension k,

admissible error err.

Output: Anomaly score for points in X .

ε ← estimate kernel parameter for first window of size n.

[K]ij ← exp
(
− ||xi−xj ||2

ε

)
, where i, j = 1 . . . n

D ← diag(
∑n

i=1[K]ij)
A ← D− 1

2 KD− 1
2

U, Λ, UT ← SVD(A)
while new sample xt available, where t > n do

l ← t mod n
Replace the row l in X with the new sample xt.

Update both row l and column l of the affinity matrix

K.

D ← diag(
∑n

i=1[K]ij)
Ã ← D− 1

2 KD− 1
2

U, Λ ← RPI with first-order approximation

(Ã, A, k, U,Λ, err)
V ← D− 1

2 U
V ← V

V1,1

Ψ ← V Λ
Find anomalies in Ψ and rate all samples in X .

A ← Ã
end while
Return aggregated anomaly scores for each sample in X .

decided. The changing scales of the data over time introduce a

challenge to the sliding window algorithm. The initial window

still determines the profile and scale for the beginning of the

analysis. Big windows cover a larger representation of the

data and thus include a more varied overview of the normal

behavior. With smaller windows, the percentage of anomalies

within the data might get too big, and detecting the normal

state becomes more difficult. Small windows, however, require

less computational time since they induce smaller matrices.

Optimal window size would therefore be the smallest possible

that contains a small enough percentage of anomalies within

the data, enabling it to capture the normal samples correctly.

Detecting the anomalies in the low-dimensional representa-

tion can be done in various ways. A straightforward approach

is to calculate distances between the embedded samples and

find the ones that deviate too far from the center of the dataset.

This and other spectral clustering methods give good results

for datasets that contain clear separation [12], [10]. Similarly,

k-means or any other clustering algorithm can find possible

normal as well as anomalous behavior in the data. The density

of points in the low-dimensional space tells how far they are

from the more clustered areas. These methods calculate the

distances to neighboring points [9]. All these methods usually

need a threshold value for the anomalous region.

In each iteration, we evaluate the anomaly level of the

samples within the window. Each sample gets a score if it

is classified as an anomaly according to the selected anomaly
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ABSTRACT

Functional magnetic resonance imaging (fMRI) produces

data about activity inside the brain, from which spatial maps

can be extracted by independent component analysis (ICA).

In datasets, there are n spatial maps that contain p voxels.

The number of voxels is very high compared to the number

of analyzed spatial maps. Clustering of the spatial maps is

usually based on correlation matrices. This usually works

well, although such a similarity matrix inherently can explain

only a certain amount of the total variance contained in the

high-dimensional data where n is relatively small but p is

large. For high-dimensional space, it is reasonable to perform

dimensionality reduction before clustering. In this research,

we used the recently developed diffusion map for dimen-

sionality reduction in conjunction with spectral clustering.

This research revealed that the diffusion map based clustering

worked as well as the more traditional methods, and produced

more compact clusters when needed.

Index Terms— clustering, diffusion map, dimensionality

reduction, functional magnetic resonance imaging (fMRI), in-

dependent component analysis, spatial maps
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1. INTRODUCTION

In order to gain understanding about the human brain, var-

ious technologies have recently been introduced, such as

electroencephalography (EEG), tomography, magnetoen-

cephalography (MEG) and functional magnetic resonance

imaging (fMRI). They provide scientists with data about the

temporal and spatial activity inside the brain. Functional

magnetic resonance imaging is a brain imaging method that

measures blood oxygenation level. It detects changes in

this level, that are believed to be related to neurotransmitter

activity. This enables the study of brain functioning, patho-

logical trait detection and treatment response monitoring.

The method localises brain function well, and thus is useful

in detecting differences in subject brain responses [1, 2].

Deeper understanding about the simultaneous activities in

the brain begins with a decomposition of the data. Indepen-

dent component analysis (ICA) has been extensively used to

analyze fMRI data. It tries to decompose the data into multi-

ple components that are mixed in the original data. Basically,

there are two ways to perform ICA: group ICA and individual

ICA [3]. Group ICA is performed on the data matrix includ-

ing all the participants’ fMRI data, and individual ICA is ap-

plied on each dataset of each participant. Among datasets of

different participants, group ICA tends to need more assump-

tions which are not required by individual ICA [4]. For indi-

vidual ICA, if the components for each participant are known,

it is expected to find the most common components among the

participants. Therefore, clustering spatial maps extracted by

ICA is a necessary step for the individual ICA approach to

c© 2013 IEEE. This is the authors’ postprint version of the article. The original print version appeared as: Tuomo Sipola, Fengyu Cong, Tapani Ristaniemi,

Vinoo Alluri, Petri Toiviainen, Elvira Brattico, and Asoke K. Nandi. Diffusion map for clustering fMRI spatial maps extracted by independent component

analysis. In Machine Learning for Signal Processing (MLSP), 2013 IEEE International Workshop on, Southampton, United Kingdom, September 2013. IEEE.



find common spatial information across different participants

in fMRI research.

ICA decomposes the individual datasets and creates com-

ponents that can be presented with spatial maps. After ICA

has been applied, a data matrix of size n by p is produced,

where n is the number of spatial maps and p is the number

of voxels of each spatial map. The n spatial maps come from

different participants, and n is much smaller than p in fMRI

research. Clustering the spatial maps is mostly done using

the n by n similarity matrix of the n by p data matrix [3, 5].

Surprisingly, it usually works well although such a similar-

ity matrix inherently can just explain a certain amount of the

total variance contained in the high-dimensional n by p data

matrix [5].

New mathematical approaches for functional brain data

analysis should take into account the characteristics of the

data analyzed. As stated, spatial maps have high dimensional-

ity p. In machine learning, dimensionality reduction is usually

performed on such datasets before clustering. In the small-n-

large-p clustering problem, the conventional dimensionality

reduction methods, for example, principal component analy-

sis (PCA) [6], might not be suitable for the non-linear prop-

erties of the data. In this research, we apply a recently de-

veloped non-linear method called diffusion map [7, 8] for di-

mensionality reduction. The probabilistic background of the

diffusion distance metric will give an alternative angle to this

dataset by facilitating the clustering task and providing vi-

sualization. This paper explores the possibility of using the

diffusion map approach for fMRI ICA component clustering.

2. METHODOLOGY

This paper considers a dimensionality reduction approach to

clustering of high-dimensional data. The clustering procedure

flows as follows:

1. Data normalization with logarithm

2. Neighborhood estimation

3. Dimensionality reduction with diffusion map

4. Spectral clustering

Data normalization should be done if the features are on

differing scales. This ensures that the distances between the

data points are meaningful. Neighborhood estimation for dif-

fusion map creates the neighborhood where connections be-

tween data points are considered. Dimensionality reduction

creates a new set of fewer features that still retain most infor-

mation. Spectral clustering groups similar points together.

We assume that our dataset consists of vectors of real

numbers: X = {x1, x2, . . . , xn} , xi ∈ R
p. In practice the

dataset is a data matrix of size n × p, whose rows represent

the samples and columns the features. In this study each row

vector is a spatial map and column vector contains the corre-

sponding voxels in different spatial maps.

2.1. Diffusion map

Diffusion map is a dimensionality reduction method that em-

beds the high-dimensional data to a low-dimensional space.

It is part of the manifold learning method family and can

be characterized with its use of diffusion distance as the pre-

served metric [7].

The initial step of the diffusion map algorithm itself cal-

culates the affinity matrix W , which has data vector distances

as its elements. Here Gaussian kernel with Euclidean distance

metric is used [7, 9]. For ε selection, see below. The affinity

matrix is defined as

Wij = exp
(
−||xi − xj ||2

ε

)
,

where xi is the p-dimensional data point. The neighborhood

size parameter ε is determined by finding the linear region in

the sum of all weights in W , while trying different values of

ε [10, 11]. The sum is

L =
n∑

i=1

n∑
j=1

Wi,j ,

From the affinity matrix W the row sum diagonal matrix

Dii =
∑n

j=1 Wij , i ∈ 1 . . . n is calculated. The W matrix is

then normalized as P = D−1W . This matrix represents the

transition probabilities between the data points, which are the

samples for clustering and classification. The conjugate ma-

trix P̃ = D
1
2 PD− 1

2 is created in order to find the eigenvalues

of P . In practice, substituting P , we get

P̃ = D− 1
2 WD− 1

2 .

This so-called normalized graph Laplacian [12] preserves

the eigenvalues [9]. Singular value decomposition (SVD)

P̃ = UΛU∗ yields the eigenvalues Λ = diag([λ1, λ2, . . . , λn])
and eigenvectors in matrix U = [u1, u2, . . . , un]. The eigen-

values of P and P̃ stay the same. It is now possible to find

the eigenvectors of P with V = D− 1
2 U [9].

The low-dimensional coordinates in the embedded space

Ψ are created using Λ and V :

Ψ = V Λ.

Now, for each p-dimensional point xi, there is a corre-

sponding d-dimensional coordinate, where d � p. The num-

ber of selected dimensions depends on how fast the eigenval-

ues decay. The coordinates for a single point can be expressed

as

Ψd : xi → [λ2v2(xi), λ3v3(xi), . . . , λd+1vd+1(xi)] . (1)

The diffusion map now embeds the data points xi while

preserving the diffusion distance to a certain bound given that

enough eigenvalues are taken into account [7].



2.2. Spectral clustering

Spectral clustering is a method to group samples into clusters

by benefitting from the results of spectral methods that reveal

the manifold, such as the diffusion map. Spectrum here is

understood in the mathematical sense of spectrum of an op-

erator on the matrix P . The main idea is that the dimension-

ality reduction has already simplified the clustering problem

so that the clustering itself in the low-dimensional space is an

easy task. This leaves the actual clustering for any clustering

method that can work with real numbers [13, 14, 15].

The first few dimensions from the diffusion map represent

the data up to a relative precision, and thus contain most of the

distance differences in the data [7]. Therefore, some of the

first dimensions will be used to represent the data. Threshold

at 0 in the embedded space divides the space between the pos-

sible clusters, which means that a linear classification can be

used. With the linear threshold, the second eigenvector sepa-

rates the data into two clusters in the low-dimensional space.

This eigenvector solves the normalized cut problem, which

means that there are small weights between clusters but the in-

ternal connections between the members inside the cluster are

strong. Clustering in this manner happens through similarity

of transition probabilities between clusters [13, 14, 16, 17].

3. RESULTS

The data comes from experiments where participants listened

to music. The data analysis was performed on a collection

of spatial maps of brain activity. After dimensionality reduc-

tion and spectral clustering, the results are presented and com-

pared to more traditional methods.

3.1. Data description

In this research the fMRI data are based on the data sets used

by Alluri et al. [18]. Eleven musicians listened to a 512-

second modern tango music piece during the experiment. In

the free-listening experiment the expectation was to find rel-

evant brain activity significantly correlating with the music

stimulus. The stimuli were represented by musical features

used in music information retrieval (MIR) [18].

After preprocessing, PCA and ICA were performed on

each dataset of each participant, and 46 ICA components (i.e.,

spatial maps) were extracted for each dataset [19, 20]. Then,

temporal courses of the spatial maps were correlated with one

musical feature, Brightness [18]. As long as the correlation

coefficient was significant (statistical p-value < 0.05), the

spatial maps were selected for further analysis. Altogether,

n = 23 spatial maps were selected from 11 participants. The

number of voxels for each spatial map was p = 209,633. So,

the 23 by 209,633 data matrix was used for the clustering to

find the common spatial map across the 11 participants.
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Fig. 1. Selecting ε for diffusion map. The red line shows the

selected value.

3.2. Data analysis

The data matrix was analyzed using the methodology ex-

plained in Section 2. The dimensionality of the dataset was

reduced and then the spectral clustering was carried out. The

weight matrix sum for ε selection is in Figure 1; the used

value is in the middle region, highlighted with straight verti-

cal line. Clustering was performed with only one dimension

in the low-dimensional space. To compare the results with

more traditional clustering methods, the high-dimensional

data was clustered with agglomerative hierarchical clustering

[21] with Euclidean distances using the similarity matrix [5]

and k-means algorithms [21]. The clustering results for two

clusters were identical using all the methods.

Figure 2 shows the resulting clustering from the diffu-

sion map. The figure uses the first two eigenpairs for low-

dimensional presentation, for these two clusters even one di-

mension is enough. The spatial maps are numbered and the

two clusters are marked with different symbols. The divid-

ing spectral clustering line is at 0 along the horizontal axis,

so the point to the right of 0 are in one cluster and to the left

another. Two clusters, dense and sparse, are detected using

this threshold. The dense cluster, marked with crosses, con-

tains components that are considered to be similar according

to this clustering. The traditional PCA and kernel PCA with

Gaussian kernel for spectral clustering are compared to the

diffusion map [22, 23]. In Figure 3 diffusion map with cor-

rect ε creates more firm connections, which eases the cluster-

ing task. The effect of diffusion distance metric is also seen.

In Figure 4 the dendrogram produced by the agglomera-

tive clustering is shown. The clustering results are the same as

with the dimensionality reduction approach. The separation

is visible at the highest level and the structure corresponds
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Fig. 3. Dimensionality reduction method comparison. The

coordinates have been scaled.

to the distances seen in Figure 2. All the points in, e.g., the

dense cluster in Figure 2 are in the left cluster of Figure 4.

This comparison shows the evident separation between the

two clusters and also validates the results from diffusion map

methodology.

Figure 5 illustrates the kind of spatial maps that are found

in the dense cluster. Dark areas along the lateral sides is

used to highlight those voxels whose values differed more

than three standard deviations from the mean. The numbers

marking the slices are their Z-coordinates. The correspond-

ing low-dimensional point is in Figure 2 numbered as 3. It is

now possible to inspect the clusters more closely with domain

experts.

Figure 6 shows the correlation matrix of all the 23 spatial

maps. This is a way to inspect the similarity of the brain ac-

tivity. The correlation matrix is also the basis of analysis for

the hierarchical clustering [5]. In the figure it can be seen that

there is some correlation between some of the spatial maps,

but not so much between others.

Figures 7 and 8 illustrate the internal structure of the clus-

ters by showing the correlation matrices for the individual

clusters. The members in the dense cluster have higher cor-
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Fig. 4. Dendrogram from the agglomerative clustering.

relation among themselves than the members in the sparse

cluster. This information is also seen in Figure 2 where the

diffusion distances inside the dense cluster are smaller.

4. DISCUSSION

In this paper we have proposed a theoretically sound non-

linear analysis method for clustering ICA components of

fMRI imaging. The clustering is based on diffusion map

manifold learning, which reduces the dimensionality of the

data and enables clustering algorithms to perform their task.

This approach is more suitable for high-dimensional data than

just applying clustering methods that are designed for low-

dimensional data. The assumption of non-linear nature of

brain activity also promotes the use of methods designed for

such problems. Particularly, the advantage of diffusion map

is in visualizing the distribution of all data samples (n spatial

maps with p voxels in each) by using only two coordinates.

As seen in the visualization, it becomes more straightforward

to determine the compact cluster from the two-dimensional

plot derived from the 209,633-dimensional feature space than

from the similarity matrix.

The results show that the proposed methodology separates

groups of similarly behaving spatial maps. Results from dif-

fusion map spectral clustering are similar to hierarchical ag-

glomerative clustering and k-means clustering. Small sam-

ple size and good separation of clusters makes the clustering

problem rather simple to solve. Moreover, the visualization

obtained from diffusion map offers an interpretation for clus-

tering.

The proposed methodology should be useful for analyzing

the function of the brain and understanding which stimuli cre-

ate similar spatial responses in which group of participants.
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Fig. 5. Example spatial map in the dense cluster, this is data

point number 3. Dark lateral areas mark more than three stan-

dard deviations from the mean, e.g. in slices 36 and 38.

The domain experts can gain more basis for the interpretation

of brain activity when similar activities are already clustered

using automated processes suitable for the task. Furthermore,

visualization helps to identify the relationships of the clusters.

Diffusion map execution times become increasingly

larger if the number of samples goes very high. This can

be overcome to a certain degree with out-of-sample exten-

sion. Big sample sizes are also a problem with traditional

clustering methods. However, diffusion map offers a non-

linear approach, and is suitable for high-dimensional data.

Both properties are true for fMRI imaging data.

The analysis could be expanded to more musical features

and to bigger datasets in order to further validate its useful-

ness in understanding the human brain during listening to

music. The method is not restricted only to certain kind of

stimulus, so it is usable with diverse fMRI experimental se-

tups. Furthermore, situations where traditional clustering fails

when processing spatial maps, the proposed methdodology

might give more reasonable results.

5. REFERENCES

[1] P M Matthews and P Jezzard, “Functional magnetic res-

onance imaging,” Journal of Neurology, Neurosurgery
& Psychiatry, vol. 75, no. 1, pp. 6–12, 2004.

[2] S. A. Huettel, A. W. Song, and G. McCarthy, Functional
Magnetic Resonance Imaging, Sinauer, Massachusetts,

2nd ed. edition, 2009.

[3] Vince D Calhoun, Jingyu Liu, and Tülay Adalı, “A re-
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